检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晓光[1,2] 孙正[3] 徐桂云[1] 阮殿旭[1]
机构地区:[1]中国矿业大学机电工程学院,徐州221116 [2]哈尔滨工业大学现代焊接生产技术国家重点实验室,哈尔滨150001 [3]枣庄学院物理与电子工程系,山东枣庄277160
出 处:《哈尔滨工业大学学报》2011年第3期132-136,共5页Journal of Harbin Institute of Technology
基 金:现代焊接生产技术国家重点实验室开放课题研究基金资助;江苏省高技术研究资助项目(BG2007013)
摘 要:为了解决现有特征选择算法没有同时考虑特征之间以及特征与类别之间的相关性,且存在计算量大、适用范围窄等问题,从均方误差最小的分类训练准则出发,并借鉴线性鉴别分析的思想,提出了一种类内方差与相关度结合的特征选择算法,并使用核方法将其推广到可以解决非线性分类的特征选择问题.该算法不仅同时考虑了样本特征之间以及特征与分类标号之间的相关性,而且使得类内方差最小,有效地提高了分类器的性能.仿真实验表明:该算法适用于对特征数量多、特征相关性强的数据集进行特征选择,其选择的特征子集能够显著提高分类精度,具有较大的优越性.To solve the problems of large calculation and narrow application scope of present feature selection algorithms which do not take the correlation among sample features and that between sample features and classification labels into account, a feature selection algorithm combining within-class variance with correlation measure was proposed based on the principle of the minimum mean square error for classifier and the idea of linear discrimination analysis, then the algorithm was expanded to solve nonlinear feature selection problems by using kernel technology. The proposed algorithm can not only consider both the correlation among the features and that between the features and classification labels, but also minimize the within-class variance, effectively improving the generalization performance of classifier. The experimental results show that the proposed algorithm can be used to select important features from these data sets with numbers of correlation characteristics, and effectively improves the classification accuracy.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49