检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Guo-Qing Cai Cheng-Gang Zhao Xiao-Ming Qin
机构地区:[1]Department of Geotechnique.School of Civil Engineering and Architecture,Beijing Jiaotong University, Beijing 100044,China [2]Hydro China Zhongnan Engineering Corporation, Changsha 410014,China
出 处:《Acta Mechanica Sinica》2010年第6期931-939,共9页力学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(50778013);the National Basic Research Program of China(973 Program)(2010CB732100);Beijing Municipal Natural Science Foundation(8082020).
摘 要:The natural clayey soils are usually structural and unsaturated,which makes their mechanical properties quite different from the remolded saturated soils.A structural constitutive model is proposed to simulate the bonding-breakage micro-mechanism.In this model,the unsaturated soil element is divided into a cementation element and a friction element according to the binary medium theory,and the stress-strain coordination for these two elements is obtained. The cementation element is regarded as elastic,whereas the friction element is regarded as elastoplastic which can be described with the Gallipoli's model.The theoretical formulation is verified with the comparative experiments of isotropic compressions on the saturated and unsaturated structural soils.Parametric analyses of the effects of damage variables on the model predictions are further carried out,which show that breakage deformation of natural clayey soils increases with the rising amount of initial defects.The natural clayey soils are usually structural and unsaturated,which makes their mechanical properties quite different from the remolded saturated soils.A structural constitutive model is proposed to simulate the bonding-breakage micro-mechanism.In this model,the unsaturated soil element is divided into a cementation element and a friction element according to the binary medium theory,and the stress-strain coordination for these two elements is obtained. The cementation element is regarded as elastic,whereas the friction element is regarded as elastoplastic which can be described with the Gallipoli's model.The theoretical formulation is verified with the comparative experiments of isotropic compressions on the saturated and unsaturated structural soils.Parametric analyses of the effects of damage variables on the model predictions are further carried out,which show that breakage deformation of natural clayey soils increases with the rising amount of initial defects.
关 键 词:Unsaturated clayey soils Structure Micro-mechanism of bonding-breakage Constitutive model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104