基于形变模型的红外人脸鲁棒识别  

Robust infrared face recognition based on deformable model

在线阅读下载全文

作  者:郝宁波[1,2] 

机构地区:[1]武汉理工大学信息工程学院,武汉430070 [2]黄淮学院国际学院,河南驻马店463000

出  处:《计算机应用研究》2011年第4期1540-1543,共4页Application Research of Computers

基  金:河南省科技攻关项目(092102210398);郑州市重大科技攻关项目(072SGZS38042)

摘  要:针对人脸识别中的光照、表情和遮挡变化三大难题,引进热红外人脸克服光照变化,并采用融合局部形变模型的人脸分类方法克服表情和遮挡变化。该方法将热红外测试人脸看成人脸库的线性组合,并用形变模型表示,通过l1最小优化求解组合系数,根据系数的稀疏性进行人脸识别。为了进一步提高算法的鲁棒性,采用人脸分片加权的策略。在Equinox人脸库上通过大量实验表明:基于红外光的人脸识别性能明显高于可见光对光照变化的影响;融合局部形变模型的人脸识别方法可以有效地提高识别率,并且克服红外人脸识别中的眼镜干扰与表情变化问题。There are three main barriers toward face recognition: the variation of illumination,expression change and occlusion.This paper put forward a method of thermal infrared face image recognition to tackle illumination change,and proposed an algorithm of integration local deformable model to overcome the problem of expression change and occlusion.This method casted the thermal infrared test face image as a linear combination of face database and used deformable model representation;match optimization deformable model for solving combinatorial coefficient,according to the sparse nature of coefficients for classification.To further improve the robustness of the algorithm,used partition-based scheme.Conducting extensive experiments on Equinox databases show that the performance of face recognition based on infrared light is significantly higher than visible light face recognition for the variation of illumination;integrating local deformable model based face recognition can effectively improve the recognition rate,and can overcome the problems of glasses occlusion and expression change.

关 键 词:人脸识别 热红外成像 形变模型 稀疏表征 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象