一种新的基于RVM的视频关键帧语义提取算法  

Novel algorithm on semantic extraction of video key frame based on relevance vector machine

在线阅读下载全文

作  者:吴昌[1] 王万良[1] 蒋一波[1] 

机构地区:[1]浙江工业大学计算机科学与技术学院,杭州310023

出  处:《计算机应用研究》2011年第4期1580-1583,共4页Application Research of Computers

基  金:国家自然科学基金资助项目(60573123);浙江省自然科学基金资助项目(Y1100611);浙江省教育厅科研资助项目(Y200803365)

摘  要:将相关向量机理论应用于视频关键帧语义提取。该方法把关键帧中的HSV颜色直方图、MPEG-7边缘直方图和灰度共生矩阵相结合,建立特征标定向量集;基于图分割模型对二叉树多分类器结构进行优化,构建最优二叉树语义多分类模型并采用主动训练策略进行训练优化;利用RVM模型对关键帧特征向量集进行训练和检测,进而得到语义。实验结果表明,所提方法与其他方法相比,不但有较高的准确率,而且在模型的稀疏性、分类检测时间等性能方面也有很好的表现。Proposed a novel method based on relevance vector machine for extracting the semantic information from keyframes of video,which was that HSV color histogram,MPEG-7 edge histogram and gray level cooccurrence matrix were combined for constructing feature vector set.Then it optimized the multi-classification classifier structure of binary tree based on graph partition model,applied the optimal binary tree for creating semantic multi-classification model,and used the active training strategy to optimize the training.Utilized RVM model to train and classify feature set of the keyframes for obtaining the semantic information eventually.The results based on lots of comparison experiments prove that the proposed method not only has excellent extraction rate,but also has better performance in time and model's sparsity when doing classification,compared with other methods.

关 键 词:相关向量机 关键帧语义 图分割模型 主动训练策略 最优二叉树 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象