检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江农林大学浙江省森林生态系统碳循环与固碳减排重点实验室,临安311300 [2]浙江农林大学国际生态中心,临安311300 [3]中国农业大学资源与环境学院,北京100094
出 处:《中国农学通报》2011年第1期446-450,共5页Chinese Agricultural Science Bulletin
基 金:国家科技支撑计划(2007BAD87B01-1A)
摘 要:准确获取作物种植空间分布和面积信息是进行粮食估产的重要前提条件,也是调整种植结构的重要数据基础。笔者以河北省2004—2005年整个作物生育期内35个时相的合成地表反射率数据为数据源,生成时间序列MODIS-EVI数据集,在利用Savitzky-Golay滤波重构时序MODIS-EVI数据的基础上,分析作物EVI时间曲线,结合作物种植结构和物候历,构建分类模型,提取2004年主要种植作物的种植空间分布及面积信息。Savitzky-Golay滤波能够有效地消除云和缺失数据的影响,同时基本上保持原有曲线的基本形状,较为真实地恢复植被指数曲线。与统计数据相比,各市分类精度相差较大,其中邯郸的分类精度最低(85.9%),沧州精度最高,达到99%。按全省计算,整体精度为95.7%。2004年,河北省冬小麦呈明显的地带性,主要分布在邯郸东南部、邢台和石家庄中部以及保定东部。利用时间序列MODIS-NDVI数据提取大区域作物种植空间分布信息是可行的。It was important to get the accurate information of crop spatial distribution and areas for yield assessment and crop pattern optimization. In this research, time-series MODIS- NDVI was used to improve the accuracy of winter wheat classification. MODIS reflectivity data was used to calculate NDVI firstly. The Savitzky-Golay smooth filter has been developed to reduce the noise and enable the reconstruction of high quality MODIS- NDVI time-series. Based on the reconstructed MODIS- NDVI , as well as crop phenology, a simple but reasonable model was built to distinguish winter wheat classification in Hebei province. The result showed that the Savitzky-Golay smooth filter model can eliminate efficiently the cloud contaminated data and abnormal data in time-series VI data, and the reconstruct data can capture the crop time profile curve better. There was a notable difference for the classification accuracy between counties. The lowest was 85.9% for Handan county, and the highest was 99% for Cangzhou county. The total accuracy of winter wheat for Hebei province was over 95%. The distribution of winter wheat in Hebei province in 2004 has the distinct features of zonality, it distributed mainly over southeastern Handan, Xintai, central Shijiazhuang and eastern Baoding. It was possible to extract planting spatial distribution information of winter wheat by using time-series MODIS- NDVI data for large areas. The accuracy also showed the results were high in reliability especially in plain areas.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222