Effect of Carburization on the Mechanical Properties of Biomedical Grade Titanium Alloys  被引量:8

Effect of Carburization on the Mechanical Properties of Biomedical Grade Titanium Alloys

在线阅读下载全文

作  者:Yong Luo Haibo Jiang Gang Cheng Hongtao Liu 

机构地区:[1]Institute of Tribology and Reliability Engineering, School of Material Science and Engineering, China University of Mining and Technology, Xuzhou 221116, P. R. China [2]Mechanical and Electrical Engineering Institute, Xuzhou Normal University, Xuzhou 221116, P. R. China

出  处:《Journal of Bionic Engineering》2011年第1期86-89,共4页仿生工程学报(英文版)

基  金:Acknowledgments The authors wish to thank the National Natural Science Foundation of China (Grant No. 51005234 and 50905180), the Foundation of China University of Mining and Technology (Grant No. 2009A056) and the Natural Science Foundation of Jiangsu Province (Grant No. BK2008005).

摘  要:Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity were measured to estimate the potential application of titanium cermets. The results show that after carburization the surface hardness of titanium cermets was 778 HV, with a significant improvement of 128% compared with that of titanium alloys. In addition, the fracture toughness of titanium cermets was 21.5 × 10^6 Pa.m^1/2, much higher than that of other ceramics. Furthermore, the analysis of the loading-unloading curve in the nanoindentation test also indicates that the plasticity of titanium cermet reached 32.1%, a relatively high value which illustrates the combination of the metal and ceramics properties. The results suggest that sequential carburization should be an efficient way to produce titanium cermets with hard surface, high toughness and plasticity.Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity were measured to estimate the potential application of titanium cermets. The results show that after carburization the surface hardness of titanium cermets was 778 HV, with a significant improvement of 128% compared with that of titanium alloys. In addition, the fracture toughness of titanium cermets was 21.5 × 10^6 Pa.m^1/2, much higher than that of other ceramics. Furthermore, the analysis of the loading-unloading curve in the nanoindentation test also indicates that the plasticity of titanium cermet reached 32.1%, a relatively high value which illustrates the combination of the metal and ceramics properties. The results suggest that sequential carburization should be an efficient way to produce titanium cermets with hard surface, high toughness and plasticity.

关 键 词:titanium alloys HARDNESS SURFACES CERAMICS sequential carburization 

分 类 号:TG146[一般工业技术—材料科学与工程] TG146.21[金属学及工艺—金属材料]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象