大规模稀疏线性方程组的GMRES-GPU快速求解算法  被引量:10

Fast GMRES-GPU Solver for Large Scale Sparse Linear Systems

在线阅读下载全文

作  者:柳有权[1,2] 尹康学[1] 吴恩华[2,3] 

机构地区:[1]长安大学信息工程学院,西安710064 [2]中国科学院软件研究所计算机科学国家重点实验室,北京100190 [3]澳门大学科技学院澳门

出  处:《计算机辅助设计与图形学学报》2011年第4期553-560,共8页Journal of Computer-Aided Design & Computer Graphics

基  金:国家自然科学基金(60973066,60833007);中国科学院软件研究所计算机科学国家重点实验室开放基金(SYSKF1004)

摘  要:重开始广义极小残量法(GMRES)是求解大规模线性方程组的常用算法之一,具有收敛速度快、稳定性好等优点.文中基于CUDA将GMRES算法在GPU上进行并行算法实现,尤其针对稀疏矩阵矢量乘法运算,通过合并访问和共享内存策略相结合的手段使得算法效率大幅度提升.对于大规模数据集,在GeForce GTX 260上的运行结果相对于Intel Core 2 Quad CPU Q9400@2.66 GHz得到了平均40余倍的加速效果,相对于Intel Core i7 CPU 920@2.67 GHz也可得到平均20余倍的加速效果.As a popular iterative method to solve linear equations, restarted generalized minimal residual method (GMRES) has the advantages of fast convergence and good stability. This paper implements a parallel GMRES in GPU based on CUDA. Particularly, the sparse matrix vector multiplication is optimized with coherence visiting and shared memory, which significantly improves the performance. We tested the paralleled GMRES on a GPU of GeForce GTX260, and compared its performance with those of the traditional GMRES on Intel Core 2 Quad CPU Q9400@2.66GHz and Intel Core i7 CPU 920@2.67GHz, which showed 40 times of speed-up and 20 times of speed-up on average respectively.

关 键 词:CUDA GPGPU 重开始广义极小残量法 稀疏矩阵矢量乘法 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象