原始神经外胚层肿瘤中FLI-1的表达及预后因素分析  被引量:18

Expression of FLI-1 and analysis of prognostic factors in primitive neuroectodermal tumor

在线阅读下载全文

作  者:陈利娟[1] 贾永旭[1] 范菲菲[1] 李醒亚[1] 

机构地区:[1]郑州大学第一附属医院肿瘤科,450052

出  处:《中华肿瘤杂志》2010年第12期917-920,共4页Chinese Journal of Oncology

摘  要:目的 研究FLI-1在原始神经外胚层肿瘤(PNET)中的表达,结合神经标记物探讨PNET的诊断方法,并分析影响患者预后的因素.方法 应用免疫组织化学法检测35例PNET组织中FLI-1、CD99、Syn、NSE、S-100、NF和Vim的表达.应用Cox回归模型,对其中资料完整的33例患者进行生存分析.结果 FLI-1的阳性率为51.4%,CD99的阳性率为88.6%,Vim、Syn、NSE和S-100的阳性率分别为91.4%、48.6%、45.7%和22.9%,NF均为阴性.Cox回归分析显示,患者的性别、年龄、肿瘤体积及分期对PNET患者生存的影响无统计学意义(P>0.05),而肿瘤的原发位置以及治疗方式对PNET患者生存的影响有统计学意义(P<0.05).结论 FLI-1与神经标记物结合是目前临床诊断PNET的首选方法,肿瘤的原发位置及治疗方式是影响患者预后的主要因素.Objective To observe the expression of FLI-1 in primitive neuroectodermal tumors (PNET), explore the value of immunohistochemical staining of FLI-1 in combination with other neural markers in diagnosis of PNET, and analyze the prognostic factors in PNET patients. Methods 35 cases of PNET, of which 33 cases with complete clinical data,were included in this study. Immmunohistochemistry (The En Vision method)was applied to detect the expression of FLI-1, CD99, Syn, NSE, S-100, NF, Vim in the tumor tissues. The clinicopathological data of 33 cases were analyzed by Cox regression. Results The positive expression rate of FLI-1 were 51.4% and that of CD99 was 88.6%. The sensitivity of FLI-1combined with CD99 was up to 100%. The positive rates of Vim, Syn, NSE, s-100 and NF were 91.4%,48.6%, 45.7%, 22.9% and 0, respectively. Cox regression analysis showed that the impact of primary location and treatment modality were of statistical significance(P 〈0.05), but the age, sex, stage or size of tumors did not(P 〉 0.05). Conclusion Immunohistochemical detection of FLI-1 and neural markers is a preferred method for clinical diagnosis of PNET. The main factors affecting the prognosis are the primary location of PNET and treatment modality.

关 键 词:神经外胚瘤 原始 基因 FLI-1 免疫组织化学 诊断 预后 

分 类 号:R686[医药卫生—骨科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象