Adhesive contact:from atomistic model to continuum model  被引量:1

Adhesive contact:from atomistic model to continuum model

在线阅读下载全文

作  者:樊康旗 贾建援 朱应敏 张秀艳 

机构地区:[1]School of Electronical & Mechanical Engineering,Xidian University

出  处:《Chinese Physics B》2011年第4期286-294,共9页中国物理B(英文版)

基  金:supported by the National Natural Science Foundation of China (Grant No. 10476019);the Fundamental Research Funds for the Central Universities of China (Grant No. JY10000904018)

摘  要:Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employs a self- consistent method to derive the Lennard-Jones surface force law from the interatomic Lennard-Jones potential with emphasis on the relationships between the parameters. The ei^ect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve.Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employs a self- consistent method to derive the Lennard-Jones surface force law from the interatomic Lennard-Jones potential with emphasis on the relationships between the parameters. The ei^ect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve.

关 键 词:Lennard-Jones potential adhesive contact atomistic model adhesion hysteresis 

分 类 号:O561[理学—原子与分子物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象