Asymptotic Bifurcation Solutions for Perturbed Kuramoto-Sivashinsky Equation  

Asymptotic Bifurcation Solutions for Perturbed Kuramoto-Sivashinsky Equation

在线阅读下载全文

作  者:黄琼伟 唐驾时 

机构地区:[1]College of Mechanics and Aerospace,Hunan University

出  处:《Communications in Theoretical Physics》2011年第4期685-687,共3页理论物理通讯(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant No.10672053

摘  要:Stability and dynamic bifurcation in the perturbed Kuramoto-Sivashinsky (KS) equation with Dirichlet boundary condition are investigated by using central manifold reduction procedure. The result shows, as the bifurcation parameter crosses a critical value, the system undergoes a pitchfork bifurcation to produce two asymptotically stable solutions. Furthermore, when the distance from bifurcation is of comparable order ε2 (|ε|≤1), the first two terms in e-expansions for the new asymptotic bifurcation solutions are derived by multiscale expansion method. Such information is useful to the bifurcation control.

关 键 词:BIFURCATION perturbed Kuramoto-Sivashinsky equation center manifold reduction method mul- tiscale expansion method 

分 类 号:O411.1[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象