检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LIU JingJing CAI WenSheng SHAO XueGuang
出 处:《Science China Chemistry》2011年第5期802-811,共10页中国科学(化学英文版)
基 金:supported by the National Natural Science Foundation of China (20835002);International Science and Technology Cooperation Program of the Ministry of Science and Technology (MOST) of China (2008DFA32250)
摘 要:The classification of cancer is a major research topic in bioinformatics. The nature of high dimensionality and small size associated with gene expression data,however,makes the classification quite challenging. Although principal component analysis (PCA) is of particular interest for the high-dimensional data,it may overemphasize some aspects and ignore some other important information contained in the richly complex data,because it displays only the difference in the first twoor three-dimensional PC subspaces. Based on PCA,a principal component accumulation (PCAcc) method was proposed. It employs the information contained in multiple PC subspaces and improves the class separability of cancers. The effectiveness of the present method was evaluated by four commonly used gene expression datasets,and the results show that the method performs well for cancer classification.The classification of cancer is a major research topic in bioinformatics. The nature of high dimensionality and small size associated with gene expression data,however,makes the classification quite challenging. Although principal component analysis (PCA) is of particular interest for the high-dimensional data,it may overemphasize some aspects and ignore some other important information contained in the richly complex data,because it displays only the difference in the first twoor three-dimensional PC subspaces. Based on PCA,a principal component accumulation (PCAcc) method was proposed. It employs the information contained in multiple PC subspaces and improves the class separability of cancers. The effectiveness of the present method was evaluated by four commonly used gene expression datasets,and the results show that the method performs well for cancer classification.
关 键 词:cancer classification principal component analysis principal component accumulation gene expression data
分 类 号:O212[理学—概率论与数理统计] Q-332[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104