检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qiang Liu Guang Jin Jinglun Zhou Quan Sun Min Xi
机构地区:[1]College of Information System and Management, National University of Defense Technology, Changsha 410073, P. R. China [2]School of Computer Science, McGill University, Montreal H3A2A7, Canada [3]School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta 303320205, USA [4]Department of Computer Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China
出 处:《Journal of Systems Engineering and Electronics》2011年第2期238-246,共9页系统工程与电子技术(英文版)
基 金:supported by the National Natural Science Foundationof China (60701006; 60804054; 71071158)
摘 要:Failure prediction plays an important role for many tasks such as optimal resource management in large-scale system. However, accurately failure number prediction of repairable large-scale long-running computing (RLLC) is a challenge because of the reparability and large-scale. To address the challenge, a general Bayesian serial revision prediction method based on Bootstrap approach and moving average approach is put forward, which can make an accurately prediction for the failure number. To demonstrate the performance gains of our method, extensive experiments on the data of Los Alamos National Laboratory (LANL) cluster is implemented, which is a typical RLLC system. And experimental results show that the prediction accuracy of our method is 80.2 %, and it is a greatly improvement with 4 % compared with some typical methods. Finally, the managerial implications of the models are discussed.Failure prediction plays an important role for many tasks such as optimal resource management in large-scale system. However, accurately failure number prediction of repairable large-scale long-running computing (RLLC) is a challenge because of the reparability and large-scale. To address the challenge, a general Bayesian serial revision prediction method based on Bootstrap approach and moving average approach is put forward, which can make an accurately prediction for the failure number. To demonstrate the performance gains of our method, extensive experiments on the data of Los Alamos National Laboratory (LANL) cluster is implemented, which is a typical RLLC system. And experimental results show that the prediction accuracy of our method is 80.2 %, and it is a greatly improvement with 4 % compared with some typical methods. Finally, the managerial implications of the models are discussed.
关 键 词:failure prediction cluster systems Bayesian approach failure rate.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.179