检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:康健[1,2] 唐力伟[1] 左宪章[1] 李浩 张西红[1]
机构地区:[1]军械工程学院 [2]72889部队 [3]63880部队
出 处:《振动与冲击》2011年第4期144-149,共6页Journal of Vibration and Shock
基 金:国家自然科学基金资助项目(60672143)
摘 要:针对如何降低传感器网络中采集的非平稳、非线性信号的数据传输量,提出了一种基于灰色Morlet小波核偏最小二乘(GMWKPLS)的预测融合模型。该模型把灰色模型预测的思想融入到核偏最小二乘(KPLS)中,采用构造的Morlet小波核函数进行数据变换,将输入映射到高维非线性的特征空间,在特征空间中,利用线性偏最小二乘方法构造预测融合模型。通过对齿轮箱断齿工况升速过程中的振动信号进行分析,结果表明,该模型使用滑动窗方法不断更新建模数据进行动态预测,预测精度高,可大大降低数据传输量,获得显著的节能收益。通过与灰色RBF核偏最小二乘(GRBFKPLS)和RBF核偏最小二乘(RBFKPLS)预测模型对比,GMWKPLS性能最佳,预测误差范围在±0.15%以内。In order to reduce the amount of data of non-stationary and nonlinear signals collected in a sensor network,a grey Morlet wavelet kernel partial least squares(GMWKPLS) model was proposed.In this model,grey prediction theory was firstly introduced into kernel partial least squares(KPLS).Then,the input-output data were mapped to a nonlinear higher dimensional feature space with Morelt kernel transformation.Finally,a prediction and fusion model was constructed with linear partial least squares.Moreover,the moving window method was utilized to update samples continuously in this dynamical prediction model.The model was validated using vibration signals of gear tooth breakage with rising speed.The results showed that the model can execute dynamic multi-step prediction,and has higher precision prediction;thus,it can obviously reduce the data amount in a sensor network and save energy;compared with grey RBF kernel partial least squares(GRBFKPLS) and RBF kernel partial least squares(RBFKPLS),GMWKPLS is best in prediction performance,and the prediction errors are with in ±0.15%.
关 键 词:灰色 Morlet核 传感器网络 数据融合 预测
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28