Bridging complexes of rare earth and cobalt cluster as catalyst precursors for Fischer-Tropsch synthesis  

Bridging complexes of rare earth and cobalt cluster as catalyst precursors for Fischer-Tropsch synthesis

在线阅读下载全文

作  者:曾尚红 杜东平 白凤华 苏海全 

机构地区:[1]Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University

出  处:《Journal of Rare Earths》2011年第4期349-353,共5页稀土学报(英文版)

基  金:supported by the National Natural Science Foundation of China (20661001, 21061008);the Key Grant of Inner Mongolia Natural Science Foundation of China (200408020201)

摘  要:Three new bridging complexes of rare earth and cobalt cluster were synthesized and characterized via ICP, IR and TG techniques. The structure of the complexes was speculated as: two rare earth atoms were bridged with four CF3COO–, and rare earth atoms were coordinated with cobalt carbonyl clusters to form a steady structure. Application of the complexes as the catalyst precursors was explored for Fischer-Tropsch synthesis. The study showed that the bridging complexes of rare earth and cobalt cluster had large molecular size and were difficult to enter pore path of γ-Al2O3, so they were dispersed on the surface of γ-Al2O3 support. In addition, the performance of Co(Ce)/ γ-Al2O3 was the best among the catalysts with complex as precursor and maintained 77.7% CO conversion at 220 oC for 80 operation hours.Three new bridging complexes of rare earth and cobalt cluster were synthesized and characterized via ICP, IR and TG techniques. The structure of the complexes was speculated as: two rare earth atoms were bridged with four CF3COO–, and rare earth atoms were coordinated with cobalt carbonyl clusters to form a steady structure. Application of the complexes as the catalyst precursors was explored for Fischer-Tropsch synthesis. The study showed that the bridging complexes of rare earth and cobalt cluster had large molecular size and were difficult to enter pore path of γ-Al2O3, so they were dispersed on the surface of γ-Al2O3 support. In addition, the performance of Co(Ce)/ γ-Al2O3 was the best among the catalysts with complex as precursor and maintained 77.7% CO conversion at 220 oC for 80 operation hours.

关 键 词:bridging complex rare earth cobalt cluster CATALYST F-T synthesis 

分 类 号:TG146.45[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象