检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁伟华[1] 丁学成[1] 王秀丽[1] 郭建新[1] 褚立志[1] 邓泽超[1] 傅广生[1] 王英龙[1]
机构地区:[1]河北大学物理科学与技术学院,保定071002
出 处:《原子与分子物理学报》2011年第2期372-378,共7页Journal of Atomic and Molecular Physics
基 金:国家自然科学基金(10774036);河北省自然科学基金(E2008000631);河北省教育厅资助项目的课题(2009308);河北省光电材料重点实验室和河北大学自然科学基金
摘 要:利用基于密度泛函理论的第一性原理,对不同直径和浓度Ni掺杂硅纳米线的形成能、能带结构、态密度和光学性质进行了计算,结果表明:杂质Ni的形成能随硅纳米线直径的减小和掺杂浓度的降低而下降,这说明直径越大的硅纳米线掺杂越困难,杂质浓度越高的硅纳米线越不稳定.Ni掺杂在费米能级附近及带隙中引入杂质能级,其主要来自Ni的3d轨道,杂质能级扩展成杂质带,改变Ni的掺杂浓度可改变硅纳米线的带隙,改善其导电性.另外,还发现掺杂浓度明显改变了硅纳米线的吸收强度和宽度.The formation energies, band structure, density of states and optical properties for Ni-doped silicon nanowires of different diameters and concentration are calculated by first-principles based on density functional theory. The results show that the formation energies of Ni impurity increase as both the diameters and impurity concentration of Ni-doped silicon nanowires increase. It indicates that doping in bigger diameter silicon nanowires is difficult and higher impurity concentrations in silicon nanowires are unstable. The doping of Ni in silicon nanowires introduces impurity level in near Fermi level and the gap. It is contributed mainly by Ni 3d level. At high impurity concentration,these impurity levels become impurity bands. The change of Ni-doped concentration can result in the change in the band gap of silicon nanowire and improvement of its conductivity. In addition, the strength and width of absorption are obviously changed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117