Frequency domain wave equation forward modeling using gaussian elimination with static pivoting  被引量:2

Frequency domain wave equation forward modeling using gaussian elimination with static pivoting

在线阅读下载全文

作  者:Song Jian-Yong Zheng Xiao-Dong Zhang Yan Xu Ji-Xiang Qin Zhen Song Xue-Juan 

机构地区:[1]Research Department of Geophysics, Research Institute of Petroleum Exploration and Development, Beijing 10083, China

出  处:《Applied Geophysics》2011年第1期60-68,95,共10页应用地球物理(英文版)

基  金:supported by China State Key Science and Technology Project on Marine Carbonate Reservoir Characterization (No. 2008ZX05004-006)

摘  要:Frequency domain wave equation forward modeling is a problem of solving large scale linear sparse systems which is often subject to the limits of computational efficiency and memory storage. Conventional Gaussian elimination cannot resolve the parallel computation of huge data. Therefore, we use the Gaussian elimination with static pivoting (GESP) method for sparse matrix decomposition and multi-source finite-difference modeling. The GESP method does not only improve the computational efficiency but also benefit the distributed parallel computation of matrix decomposition within a single frequency point. We test the proposed method using the classic Marmousi model. Both the single-frequency wave field and time domain seismic section show that the proposed method improves the simulation accuracy and computational efficiency and saves and makes full use of memory. This method can lay the basis for waveform inversion.频率域波动方程正演是求解一个大型线性稀疏方程组问题,其受到计算效率和内存存储问题的限制。常规的高斯消元法不能满足大型数据的并行计算,本文提出基于静主元消元法(GESP)进行稀疏矩阵LU分解和多炮有限差分正演,该方法不仅提高了稳定性,更有利于单频点内LU分解的分布式并行计算。通过Marmousi模型模拟试验,单频波场和转化到时间域地震剖面的试验表明模拟精度和计算效率得到提高,节约并充分利用内存,为波形反演奠定基础。

关 键 词:Gaussian elimination with static pivoting frequency-domain wave equation forward modeling single-frequency distributed parallel 

分 类 号:P631.443[天文地球—地质矿产勘探] O11[天文地球—地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象