检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑皎凌[1,2] 唐常杰[1] 徐开阔[1] 杨宁[1] 段磊[1] 李红军[1]
机构地区:[1]四川大学计算机学院,四川成都610065 [2]成都信息工程学院软件工程系,四川成都610225
出 处:《软件学报》2011年第5期899-913,共15页Journal of Software
基 金:国家自然科学基金(60373000);国家科技支撑计划(2006BAI05A01);中国博士后科学基金(20090461346);教育部人文社会科学研究青年基金(10YJCZH117);中央高校基本科研业务费专项资金科技创新项目(SWJTU09CX035);成都信息工程学院引进人才项目(KYTZ201110)
摘 要:在基因表达式编程(gene expression programming,简称GEP)中,由于不同问题得到的适应度-距离相关系数(fitness-distance correlation,简称FDC)值很相近,所以难以用FDC预测GEP求解不同问题的进化难度.为了解决该问题,提出了态势模型及其区间密度指标来预测GEP的进化难度.主要工作包括:(1)提出了GEP染色体之间的距离和态势模型的新概念;(2)提出了态势模型中的区间密度指标;(3)从动力学角度证明了态势模型是对GEP原搜索空间的一种映射,并且该映射保持了种群在原搜索空间中移动的动力学性质;(4)分析了用态势模型区间密度预测GEP进化难度的合理性;(5)用实验验证了区间密度能够准确预测GEP求解问题的进化难度.Fitness Distance Correlation (FDC) can hardly predict the evolution difficulty of Gene Expression Programming (GEP) because problems with different hardness would result in very similar FDC values in GEP. To solve the problem, the authors propose a posture model and region density to predict GEP's evolution difficulty. This study made the following contributions: (1) It introduces the concepts of the chromosomes' distance and posture model in GEP; (2) It proposes region density of a posture model; (3) It proves that the posture model is a mapping from the original searching space, and the mapping preserves the population's dynamic migration property in the original searching space; (4) It demonstrates the validity of using posture model and region density to predict GEP's evolution difficulty; (5) It conducts extensive experiments to show that the new model can precisely predict the evolution difficulty of GEP.
关 键 词:基因表达式编程(GEP) 进化难度 态势模型 区间密度 空间映射
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13