检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安理工大学自动化与信息工程学院,西安710048
出 处:《系统仿真学报》2011年第5期930-934,共5页Journal of System Simulation
基 金:国家自然科学基金(60805020);陕西省自然科学基金(2010JQ8006);陕西省教育厅科学研究专项(2010JK711)
摘 要:BP网络良好的逼近特性和泛化能力使其在模式识别、智能控制和系统决策等领域有广泛应用。但网络训练过程中存在的收敛速度慢、容易陷入局部极值等局限性限制了进一步应用。提出一种新的智能优化算法-文化粒子群算法来对BP神经网络的权值和阈值同时进行优化。算法设置了群体空间和信念空间两类独立空间,群体空间采用自适应粒子群算法完成进化,信念空间通过更新函数来进行演化。两类空间的交互通过接受操作和影响操作利用同步式传输方式完成。以Iris分类问题的BP网络模型为仿真实例,对算法的正确性和有效性进行验证。仿真结果表明,改进算法具有较快的收敛速度。The approximation and generalization characteristics of Back Propagation(BP) network make it successfully apply to the areas of pattern recognition,intelligent control and system decision and so on.The low convergence and easy trapping into local extremum of BP network limits its further application.A new intelligent optimization method,Cultural Particle Swarm Optimization(CPSO),was proposed to optimize the weight value and the threshold.Two kinds of spaces,population space and belief space,were set in the algorithm.The population space was evolved with adaptive PSO strategy and the belief space was with update function.The interaction between two spaces was by the acceptance operation and impact operation using synchronous transmission mode.The validity and effectiveness of the proposed algorithm was verified by the simulation Iris classification problem.The simulation result shows that the algorithm has faster convergence speed.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229