检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学能源动力与机械工程学院,河北保定071003
出 处:《电力科学与工程》2011年第4期30-33,共4页Electric Power Science and Engineering
摘 要:对偏最小二乘回归分析在供电煤耗预测中的应用进行了研究。该方法可有效地进行数据准备和样本预处理,并对影响因素提取主成分,而提取出的成分具有线性无关的特点,对供电煤耗有较好的解释能力。根据某电厂供电煤耗与锅炉效率、汽机热耗、厂用电率的对应数据资料,将供电煤耗与三者之间的关系加以分析,建立供电煤耗的预测模型。预测模型的检验方式采用交叉有效性检验,选定对模型有显著改善的PLS主成分个数。结果表明,该方法能准确地估计出变量的回归系数,建模速度快、精度高。The effectiveness of applying partial least squares regression to power supply coal consumption forecasring is investigated. This algorithm not only can effectively perform the data preparing and samples pretreatment, but also can extract principal components of influencing factors. The extracted components have the property of linearly independence, can be used to explain the power supply coal consumption better. The article is according to corresponding data of power supply coal consumption with boiler efficiency , turbine heat consumption and power utilization rate, mark the relationship between power supply coal consmnption with the three to a model, and estab- lish prediction model of power supply coal consumption. The effectiveness of cross-examination methods of the model test is used to select the number of PLS principal components. The results show that this method can estimate variables regression coefficients accurately, and with this method the high modeling speed and high forecasting accuracy can be obtained.
分 类 号:TM621[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30