多重工作休假的Geom/Geom/1/N排队的稳态分析  

Performance Analysis of the Geom/Geom/1/N Queuing System with Multiple Working Vacations

在线阅读下载全文

作  者:李彦策[1] 冯慧 徐秀丽[1] 

机构地区:[1]燕山大学理学院,河北秦皇岛066004 [2]长治县第一中学,山西长治047100

出  处:《四川理工学院学报(自然科学版)》2011年第2期171-174,共4页Journal of Sichuan University of Science & Engineering(Natural Science Edition)

基  金:国家自然科学基金资助项目(10671170)

摘  要:文章研究了多重工作休假的Geom/Geom/1/N离散时间排队系统。应用矩阵几何解的方法,给出了稳态下顾客数的概率分布,并得到了系统平均队长、平均等待队长以及顾客的消失概率等性能指标。最后通过数值例子分析了系统参数对系统的平均队长和消失概率的影响。In this paper,we consider a discrete time Geom/Geom/1/N queuing system with multiple working vacations.We obtain the distribution of the number of customers in the system by matrix-geometric solution method.Some performance measures of the system such as the average number of the customers and the average waiting time of a customer and the loss probability in the stationary state are also presented.Finally,we verify the effect of the parameters of system on the average queue length and loss probability by numerical examples.

关 键 词:离散时间排队 矩阵几何解 多重工作休假 有限源 

分 类 号:O226[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象