最小描述长度优化下的医学图像统计形状建模  被引量:3

Statistical shape modeling based on minimum description length optimization in medical images

在线阅读下载全文

作  者:蒋建国[1] 宣浩[1] 郝世杰[1] 詹曙[1] 李鸿[2] 

机构地区:[1]合肥工业大学计算机与信息学院,合肥230009 [2]安徽医科大学第一附属医院骨科,合肥230022

出  处:《中国图象图形学报》2011年第5期879-885,共7页Journal of Image and Graphics

基  金:教育部博士点基金项目(20060359004);教育部留学归国人员科研启动基金项目(413117)

摘  要:统计形状模型(SSM)是有效的图像处理与分析方法。为了建立模型,需要从形状样本集中提取出具有对应关系的轮廓采样点集合,这是决定模型性能的关键。传统的手动标定这些点集来确保对应关系枯燥耗时且带有主观性,更难以向高维拓展。对形状建立逐层的多尺度参数表示,基于最小描述长度(MDL),在粗尺度上建立反映点对应程度的目标函数并最小化,提出首先确保粗尺度上具有最优意义的点对应,同时在精尺度上使用最便捷的弧长参数函数来确定特征点,完成感兴趣目标的快速统计形状建模,进而统计分析以验证模型性能,为后续图像分割或定量分析打下基础。实验对肌肉骨骼核磁共振成像(MRI)中椎骨、椎间盘以及半月板等具有临床意义的结构建立了统计形状模型,验证了本文方法与手动取点相比具有客观可重复性且更加简洁,与单一尺度下的MDL方法相比时间效率更高。基于此模型的图像分割与基于手动建模的分割相比,误差相当或有所降低。Statistical shape model (SSM) is an efficient method of image processing and analysis. One key factor in building models is to obtain correspondent landmarks among the whole shape dataset. Traditional manual land-marking is temporally expensive, subjective, boring and prohibitively extensive in dimension. In this paper, a multi-scale parameterization on shapes allows a minimum description length (MDL) based optimization on landmark correspondence in a coarse scale and a most convenient arc parameterization based landmark correspondence in a fine scale. This achieves a fast and accurate SSM building, which is the foundation on following image segmentation and quantitative analysis. In experiments, SSMs are built with vertebral body, intervertebral disc and meniscus shapes extracted from various MRIs respectively. It is testified that the models built with the proposed scheme is not only more repeatable and concise than model baseds on manual landmarking, but also more temporally efficient than model purely based on optimization. The segmentation errors from the proposed method are comparable with or better than those from the manual modeling based segmentation.

关 键 词:统计形状模型 最小描述长度 点对应问题 自动标定特征点 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象