机构地区:[1]Department of Modern Physics, University of Science and Technology of China [2]Huangshan University [3]Thomas Jefferson National Accelerator Facility [4]Seoul National University [5]Temple University
出 处:《Chinese Physics C》2011年第5期488-493,共6页中国物理C(英文版)
基 金:Supported by National Natural Science Foundation of China (10605022,10875053);US Department of Energy (DE-AC05-84ER-40150) under which Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility
摘 要:A precision measurment of inclusive electron scattering cross sections is carried out at Jefferson Lab in the quasi-elastic region for 4 He, 12 C, 56 Fe and 208 Pb targets. The longitudinal (R L ) and transverse (R T ) response functions of the nucleon need to be extracted precisely in the momentum transfer range 0.55 GeV/c≤ | q | ≤1.0 GeV/c. To achieve the above goal, a NaI (Tl) calorimeter is used to distinguish good electrons from background, including pions and low energy electrons rescattered from the walls of the spectrometer magnets. Due to a large set of kinematics and changes in HV settings, a number of calibrations are performed for the NaI (Tl) detector. Corrections for a few blocks of NaI (Tl) with bad or no signal are applied. The resolution of the NaI (Tl) detector after calibration reached δE/E^(1/2) ≈ 3% at E=1 GeV. The performance of the NaI (Tl) detector is compared with a simulation. The good calibration and background analysis for the NaI(Tl) detector are very important for the reduction of the systematic error of cross sections and the separation of R L and R T .A precision measurment of inclusive electron scattering cross sections is carried out at Jefferson Lab in the quasi-elastic region for 4 He, 12 C, 56 Fe and 208 Pb targets. The longitudinal (R L ) and transverse (R T ) response functions of the nucleon need to be extracted precisely in the momentum transfer range 0.55 GeV/c≤ | q | ≤1.0 GeV/c. To achieve the above goal, a NaI (Tl) calorimeter is used to distinguish good electrons from background, including pions and low energy electrons rescattered from the walls of the spectrometer magnets. Due to a large set of kinematics and changes in HV settings, a number of calibrations are performed for the NaI (Tl) detector. Corrections for a few blocks of NaI (Tl) with bad or no signal are applied. The resolution of the NaI (Tl) detector after calibration reached δE/E^(1/2) ≈ 3% at E=1 GeV. The performance of the NaI (Tl) detector is compared with a simulation. The good calibration and background analysis for the NaI(Tl) detector are very important for the reduction of the systematic error of cross sections and the separation of R L and R T .
关 键 词:Coulomb sum rule NaI (T1) CALIBRATION resolution GEANT4 simulation
分 类 号:O572.212[理学—粒子物理与原子核物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...