机构地区:[1]Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences [2]Graduate University of Chinese Academy of Sciences [3]National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences
出 处:《Chinese Journal of Oceanology and Limnology》2011年第3期686-690,共5页中国海洋湖沼学报(英文版)
基 金:Supported by the National Natural Science Foundation (No. 30530080);the Ministry of Science and Technology of China (Nos. 2007AA09Z402, 2007AA09Z403);the Department of Science and Technology of Shandong Province (No. 2006GG2205023)
摘 要:Previously, we had characterized several structurally interesting brominated phenols from the marine red alga Symphyocladia latiuscula collected from various sites. However, Phytochemical investigations on this species collected from the Weihai coastline of Shandong Province remains blank. Therefore, we characterized the chemical constituents of individuals of this species collected from the region. Eight bromophenols were isolated and identified. Using detailed spectroscopic techniques and comparisons with published data, these compounds were identified as 2,3-dibromo-4,5-dihydroxybenzyl methyl ether (1), 3,5-dibromo-4-hydroxybenzoic acid (2), 2,3,6-tribromo-4,5-dihydroxymethylbenzene (3), 2,3,6-tribromo-4,5-dihydroxybenzaldehyde (4), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (5), bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane (6), 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane (7), and 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)-pyrrolidin-2-one (8). Among these compounds, 1 and 2 were isolated for the first time from S. latiuscula. Each compound was evaluated on the ability to inhibit protein tyrosine phosphatase 1B (PTP1B), which is a potential therapeutic target in the treatment of type 2 diabetes. Bromophenols 5, 6, and 7 showed strong activities with IC50 values of 3.9, 4.3, and 3.5 μmol/L, respectively. This study provides further evidence that bromophenols are predominant among the chemical constituents of Symphyocladia, and that some of these compounds may be candidates for the development of anti-diabetes drugs.Previously, we had characterized several structurally interesting brominated phenols from the marine red alga Symphyocladia latiuscula collected from various sites. However, Phytochemical investigations on this species collected from the Weihai coastline of Shandong Province remains blank. Therefore, we characterized the chemical constituents of individuals of this species collected from the region. Eight bromophenols were isolated and identified. Using detailed spectroscopic techniques and comparisons with published data, these compounds were identified as 2,3-dibromo-4,5-dihydroxybenzyl methyl ether (1), 3,5-dibromo-4-hydroxybenzoic acid (2), 2,3,6-tribromo-4,5-dihydroxymethylbenzene (3), 2,3,6-tribromo-4,5-dihydroxybenzaldehyde (4), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (5), bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane (6), 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane (7), and 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)-pyrrolidin-2-one (8), Among these compounds, 1 and 2 were isolated for the first time from S. latiuscula. Each compound was evaluated on the ability to inhibit protein tyrosine phosphatase 1B (PTP1B), which is a potential therapeutic target in the treatment of type 2 diabetes. Bromophenols 5, 6, and 7 showed strong activities with IC50 values of 3.9, 4.3, and 3.5 μmol/L, respectively. This study provides further evidence that bromophenols are predominant among the chemical constituents of Symphyocladia, and that some of these compounds may be candidates for the development of anti-diabetes drugs.
关 键 词:marine alga RHODOMELACEAE Symphyocladia latiuscula bromophenol protein tyrosine phosphatase 1B (PTP1B)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...