基于多时相HJ卫星的冬小麦面积提取  被引量:48

The Area Extraction of Winter Wheat Based on Multi-temporal HJ Remote Sensing Satellite Images

在线阅读下载全文

作  者:赵丽花[1,2] 李卫国[2] 杜培军[1] 

机构地区:[1]中国矿业大学国土环境与灾害监测国家测绘局重点实验室,徐州221116 [2]江苏省农业科学院资源与环境所,南京210014

出  处:《遥感信息》2011年第2期41-45,50,共6页Remote Sensing Information

基  金:国家"863"计划(编号:2008AA10Z214);农业部行业科技项目(编号:200803037);江苏省农业科学院人才基金(编号:6510805);江苏省农业科学院基金项目(编号:6110824)

摘  要:我国环境与灾害监测预报小卫星HJ-1A/B具有较高的时间和空间分辨率,在作物种植面积提取和长势监测等方面具有较大优势。本文以江苏省姜堰市为研究区,根据冬小麦的物候规律和季相节律的差异性,选取返青期和拔节期两个生育期的HJ卫星影像,借鉴分层信息提取法原理,综合利用监督分类和非监督分类法,结合人机交互目视解译和实地定位调查等资料提取了姜堰市的冬小麦种植面积,总体面积提取精度达到90.22%,样点空间匹配精度为81.25%,实验基地空间匹配精度为80.34%。结果表明:HJ卫星能够用于提取南方地区冬小麦种植面积和长势监测,满足农情监测的需要,且利用多时相遥感影像能有效地增加信息量,实现信息互补,有助于提高监测精度。Environment and disaster monitoring and forecasting satellites of our country,with higher time and spatial resolution,have a great advantage in extracting the crop area and monitoring crop growth.Taking the Jiangyan city of Jiangsu province as the study area,two HJ-1A/B images of the reviving and jointing growth stage of winter wheat are chose based on the law of winter wheat phenology and seasonal differences in rhythm.This paper references hierarchical information extraction method,and uses supervised classification and unsupervised classification comprehensively,and extracts accurately winter wheat area of Jiangyan city and its townships by twice refinement combining with human-computer interaction visual interpretation and field investigation data.The extraction accuracy is 90.22%.The results show that HJ satellite is able to extract winter wheat area and monitor its growth in southern region,which can meet the needs of agricultural monitoring.And multi-temporal remote sensing images can increase and complement the information,which is helpful in improving the monitoring accuracy.

关 键 词:冬小麦 HJ卫星 多时相遥感影像 种植面积 

分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象