检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳工业大学信息科学与工程学院,沈阳110870
出 处:《沈阳工业大学学报》2011年第2期193-197,共5页Journal of Shenyang University of Technology
基 金:辽宁省科技攻关资助项目(2006219005);沈阳市科技局科技支撑计划资助项目(1081229-1-00)
摘 要:为了研究细分精度高、位移跟踪速度快的光栅位移测量系统,提出一种基于径向基神经网络的光栅细分方法.利用三层RBF神经网络,在一个莫尔条纹信号周期内取多个样本点,并把多个样本点所对应的正切值作为网络的输入,将该样本点在一个栅距内的微位移量作为目标输出,建立合理的神经网络模型,与DSP相结合实现莫尔条纹细分.通过对样本点的分段学习,证明了仅用少量的神经元即可实现高精度细分.该神经网络结构简单,非线性逼近能力强,通过对非样本点数据的实验验证,证明了该系统的可行性,具有一定的实用价值.In order to develop the grating displacement measuring system with higher subdivision accuracy and displacement tracking speed,a grating subdivision method based on radial basis function neural network was proposed.The multiple sample points in one moiré signal period were taken out using three-layer RBF neural network.The tangent values corresponding to the multiple sample points were taken as the input of the network and the micro displacement of the sample point in a grating pitch was regarded as the target output.The rational neural network model was established and combined with DSP to achieve the moiré fringe subdivision.Through the fractional learning of sample point,it is demonstrated that the high precision subdivision can be realized only with a few neurons.The structure of this neural network is simple and the ability of nonlinear approximation is powerful.The experiments of non-sample points prove that the system is feasible,and has application value.
关 键 词:光栅传感器 莫尔条纹 细分 乘法倍频 RBF神经网络 多项式拟合 DSP芯片 Matlab仿真
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173