The Integrable in Liouville Sense of a Finite-dimensional Hamilton System  被引量:2

The Integrable in Liouville Sense of a Finite-dimensional Hamilton System

在线阅读下载全文

作  者:ZHU Yun YIN Li 

机构地区:[1]Department of Mathematics and Information Science,Zhengzhou University of Light Industry,Zhengzhou 450002,China

出  处:《Chinese Quarterly Journal of Mathematics》2011年第1期11-15,共5页数学季刊(英文版)

基  金:Supported by the NNSF of China(10701066)

摘  要:Based on a 2 × 2 eigenvalue problem,a set of(1 + 1)-dimensional soliton equations are proposed.Moreover,we obtain a finite dimensional Hamilton system with the help of nonlinearization approach.Then the generating function approach and the way to straighten out of Fm-flow are used to prove the involutivity and the functional independence of conserved integrals for the finite-dimensional Hamilton system,hence,we can verify it is completely integrable in Liouville sense.

关 键 词:(1+1)-dimension equation Hamilton system the generating function 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象