机构地区:[1]Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications),Ministry of Education [2]College of Science,Jimei University
出 处:《Chinese Optics Letters》2011年第5期15-18,共4页中国光学快报(英文版)
基 金:supported by the National "863" Program of China(Nos.2009AA01Z256,2009AA01Z253,and 2008AA01A331);the National Natural Science Foundation of China(Nos.61001121,60736036,and 61006041)
摘 要:A simple design procedure is used to generate photonic crystal fibers (PCFs) with ultra-flattened chromatic dispersion. Only four parameters are required, which not only considerably saves the computing time, but also distinctly reduces the air-hole quantity. The influence of the air-hole diameters of each ring of hexagonal PCFs (H-PCF, including 1-hole-missing and 7-hole-missing H-PCFs), circular PCFs (C-PCF), square PCFs (S-PCF), and octagonal PCFs (O-PCF) is investigated through simulations. Results show that regardless of the cross section structures of the PCFs, the 1st ring air-hole diameter has the greatest influence on the dispersion curve followed by that of the 2nd ring. The 3rd ring diameter only affects the dispersion curve within longer wavelengths, whereas the 4th and 5th rings have almost no influence on the dispersion curve. The hole-to-hole pitch between rings changes the dispersion curve as a whole. Based on the simulation results, a procedure is proposed to design PCFs with ultra-flattened dispersion. Through the adjustment of air-hole diameters of the inner three rings and hole-to-hole pitch, a flattened dispersion of 0±0.5 ps/(nm·km) within a wavelength range of 1.239 – 2.083 μm for 5-ring 1-hole-missing H-PCF, 1.248 – 1.992 μm for 5-ring C-PCF, 1.237 – 2.21 μm for 5-ring S-PCF, 1.149 – 1.926 μm for 5-ring O-PCF, and 1.294 – 1.663 μm for 7-hole-missing H-PCF is achieved.A simple design procedure is used to generate photonic crystal fibers (PCFs) with ultra-flattened chromatic dispersion. Only four parameters are required, which not only considerably saves the computing time, but also distinctly reduces the air-hole quantity. The influence of the air-hole diameters of each ring of hexagonal PCFs (H-PCF, including 1-hole-missing and 7-hole-missing H-PCFs), circular PCFs (C-PCF), square PCFs (S-PCF), and octagonal PCFs (O-PCF) is investigated through simulations. Results show that regardless of the cross section structures of the PCFs, the 1st ring air-hole diameter has the greatest influence on the dispersion curve followed by that of the 2nd ring. The 3rd ring diameter only affects the dispersion curve within longer wavelengths, whereas the 4th and 5th rings have almost no influence on the dispersion curve. The hole-to-hole pitch between rings changes the dispersion curve as a whole. Based on the simulation results, a procedure is proposed to design PCFs with ultra-flattened dispersion. Through the adjustment of air-hole diameters of the inner three rings and hole-to-hole pitch, a flattened dispersion of 0±0.5 ps/(nm·km) within a wavelength range of 1.239 – 2.083 μm for 5-ring 1-hole-missing H-PCF, 1.248 – 1.992 μm for 5-ring C-PCF, 1.237 – 2.21 μm for 5-ring S-PCF, 1.149 – 1.926 μm for 5-ring O-PCF, and 1.294 – 1.663 μm for 7-hole-missing H-PCF is achieved.
关 键 词:Chromatic dispersion Crystal whiskers Design Dispersion (waves) DISPERSIONS Photonic crystals
分 类 号:TN253[电子电信—物理电子学] TP391.72[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...