2种降尺度方法在太湖流域的应用对比  被引量:6

Comparative study on the application of two downscaling methods in the Taihu Basin

在线阅读下载全文

作  者:刘浏[1] 徐宗学[1] 黄俊雄[1,2] 

机构地区:[1]北京师范大学水科学研究院水沙科学教育部重点实验室,北京100875 [2]北京市水利科学研究所,北京100048

出  处:《气象科学》2011年第2期160-169,共10页Journal of the Meteorological Sciences

基  金:国家自然科学基金资助项目(50979005);中国水利水电科学研究院开放研究基金(IWHRKF200814)

摘  要:同时应用统计降尺度模型SDSM(Statistical Downscaling Model)和区域气候模式PRE-CIS(Providing Regional Climate for Impacts Studies),对太湖流域的日降水量和日最高、最低气温进行降尺度处理,建立未来2021—2050年的气候变化情景,并对比分析两种方法的适用性。结果表明,两种方法模拟的未来时期日最高、最低气温季节和年的变化情景增幅总体上比较一致,高排放情景A2下模拟生成的情景增温幅度较B2情景大,未来时期最高气温增加幅度比最低气温明显。两种方法模拟的降水变化情景差异明显,PRECIS模拟的2021—2050年降水增加趋势明显,增幅较大;而SDSM模拟的未来时期降水存在一定的减少趋势,变化幅度相对较小。以上结果说明PRECIS和SDSM都能较好地模拟太湖流域未来气温变化情景,而对未来降水的模拟不确定性较大。The relative merits of the SDSM(Statistical Downscaling Model) and PREICS(Providing Regional Climate for Impacts Studies) are investigated in this paper by a case study in the Taihu Basin for the future period(2021—2050).The climate change scenarios for daily precipitation and daily maximum/ minimum temperature are generated by using the two models.Results show that there is an increasing trend of daily maximum and minimum temperature at both seasonal and yearly scales compared with the results in the baseline period from PRECIS,which is similar with that from SDSM results.The changes of temperature under A2 scenario are greater than that under B2 scenario,and the increasing trend of the maximum temperature is more significant than that of the minimum temperature.The changes of daily precipitation generated by the two models show marked difference.There is an obvious increasing trend in the future according to PRECIS results,while an inverse trend occurs in SDSM results.Future temperature scenarions in the Taihu Basin could be represented well by SDSM or by PRECIS,while greater uncertainties remain in precipitation scenarion.

关 键 词:气候变化 统计降尺度 动力降尺度 PRECIS 

分 类 号:P412[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象