数学分离-多波长直线回归法测定鼻炎滴剂中的黄芩苷和盐酸麻黄碱  

Determination of baicalin and ephedrine hydrochloride in coryza dripping solution by Mathematics Separation-multiwavelength linear regression spectrophotometry

在线阅读下载全文

作  者:刘明[1] 王祖朝[1] 黄喜茹[2] 

机构地区:[1]中国地质大学(北京)信息工程学院,北京100083 [2]河北医科大学药学院分析化学教研室,河北石家庄050017

出  处:《计算机与应用化学》2011年第5期640-642,共3页Computers and Applied Chemistry

摘  要:鼻炎滴剂是中西复方制剂,主要成分有黄芩苷、盐酸麻黄碱、金银花、辛夷油、冰片等。本文研究建立了数学分离-多波长直线回归法,用于测定鼻炎滴剂中黄芩苷和盐酸麻黄碱的含量。黄芩苷和盐酸麻黄碱的最大吸收波长分别为278.0 nm和257.0 nm,将2组分吸收强度较大的242.0 nm~283.0 nm选为测定范围。在测定范围内选择42个点进行测定,使用数学分离-多波长直线回归方法计算分析,直接测定了鼻炎滴剂中的黄芩苷和盐酸麻黄碱含量。本文研究使用的市售鼻炎滴剂中2种药效成分的平均回收率和相对标准偏差分别为102.0%,0.86%和98.2%,0.87%。数学分离-多波长直线回归法简单、快速、准确、适用于鼻炎滴剂的质量控制过程。Coryza dripping solution is mainly composed of baicalin,ephedrine hydrochloride,honeysuckle,magnolia oil,borneol,etc.This work established a mathematics separation-multi-wavelength linear regression spectrophotometry method,for the process of determining the content of baicalin and ephedrine hydrochloride in Coryza dripping solution.The maximum absorption wavelengths for baicalin and ephedrine hydrochloride are 278.0 nm and 257.0 nm, respectively.And both of the two ingredients have high absorption intensities in the range of(242.0~283.0) nm.So,it was selected as the measuring wavelengths range,where 42 points were studied.By employing multi-wavelength linear regression spectrophotometry calculation method,the content of baicalin and ephedrine hydrochloride were directly determined through mathematics separation.The average recoveries and relative standard deviations of baicalin and ephedrine hydrochloride were 102.0%,0.86%and 98.2%,0.87%in the coryza dripping solution bought from market.The method introduced here is convenient and accurate,which can be used for quality control of coryza dripping solution.

关 键 词:鼻炎滴剂 黄芩苷 盐酸麻黄碱 数学分离-多波长直线回归法 

分 类 号:R927.2[医药卫生—药学] O6-39[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象