检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学船舶海洋与建筑工程学院,上海200240 [2]西门子工业软件(上海)有限公司,上海200042
出 处:《应用数学和力学》2011年第6期730-740,共11页Applied Mathematics and Mechanics
基 金:交通部西部交通建设科技资助项目(2009318000046)
摘 要:介绍了基于强形式的RKPM配点法求解瞬态动力问题的算法,并提出了采用RKPM配点法,配合时间域中心差分求解二阶波动方程的稳定性评价方法,并通过数值算例验证了此方法的正确性.此评价方法可以方便有效地评估出实际计算时的临界时间步长.通过数值算例比较可知,实际算例的计算临界时间步长与本评价方法,所预测的临界时间步长结果非常接近.给出了如何合理地选择RKPM形函数支撑域的建议.最后与径向基函数配点法进行了对比研究.Reproducing kernel collocation method based on strong formulation was introduced for transient dynamics, von Neumann stability and dispersion analysis of reproducing kernel collocation method with central difference temporal discretization was derived to evaluate the stability condition for second order wave problem. The stability analysis algorithm proposed firstly given an approach to predict critical time step for second order wave problem which can greatly save computational time in application. A numerical test was conducted to validate this algorithm. The comparison of numerical critical time step and predicted results shows good agreement. The guidance to choose a proper support size of reproducing kernel shape function is also given. The results by radial basis collocation method are also listed for comparison.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7