检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:覃姜维[1] 郑启伦[1] 马千里[1] 韦佳[1] 林古立[1]
机构地区:[1]华南理工大学计算机科学与工程学院,广东广州510006
出 处:《华南理工大学学报(自然科学版)》2011年第5期108-114,共7页Journal of South China University of Technology(Natural Science Edition)
基 金:广东省自然科学基金资助项目(9451064101003233);广东省科技攻关项目(2007B010200044);华南理工大学中央高校基本科研业务费资助项目(2009ZM0125;2009ZM0189)
摘 要:传统机器学习方法假设训练数据和测试数据分布一致,但在许多实际应用中这个假设并不能得到满足.针对该情况,文中提出了一种非参数化的迁移学习算法———多步桥接精化算法.首先构造一系列中间模型来建立不同领域之间的桥梁,然后在近邻的模型间进行标签传播,实现从源领域到目标领域的判别信息迁移.实验结果表明,分布相近的模型使迁移变得平滑,并使精化结果不敏感于初始标签,文中算法在分类精度上优于其他对比算法.In the traditional machine learning methods,it is assumed that the training and test data have an identical distribution.However,this assumption is not valid in many cases.In order to solve this problem,a non-parametric transfer learning algorithm named Multi-Step Bridged Refinement is proposed.In this algorithm,a series of intermediate models is constructed to bridge different domains,and the label propagation between neighboring mo-dels is performed,through which the discriminative information is transferred from the source domain into the target one.Experimental results show that the models with similar distribution contribute to smooth transfer and make the refinement results insensitive to the initial label,and that the proposed algorithm attains a classification accuracy higher than that from other algorithms.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.115.102