Preparation of Li_4Ti_5O_(12) submicrospheres and their application as anode materials of rechargeable lithium-ion batteries  被引量:9

Preparation of Li_4Ti_5O_(12) submicrospheres and their application as anode materials of rechargeable lithium-ion batteries

在线阅读下载全文

作  者:ZHANG Ai, ZHENG ZongMin, CHENG FangYi, TAO ZhanLiang & CHEN Jun Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education College of Chemistry, Nankai University, Tianjin 300071, China 

出  处:《Science China Chemistry》2011年第6期936-940,共5页中国科学(化学英文版)

基  金:supported by the National Natural Science Foundation of China (21076108);the National Basic Research Program of China (2011CB935902);MOE Innovation Team (IRT0927);Tianjin High-Tech (10ZCGHHZ01200 & 10SYSYJC27600)

摘  要:We report on the preparation of spinel Li4Ti5O12 submicrospheres and their application as anode materials of rechargeable lithium-ion batteries. The spinel Li4Ti5O12 submicrospheres are synthesized with three steps of the hydrolysis of TiCl4 to form rutile TiO2, the hydrothermal treatment of rutile TiO2 with LiOH to prepare an intermediate phase of LiTi2O4+δ, and the calcinations of LiTi2O4+δ to obtain spinel Li4Ti5O12. The as-prepared products are investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The diameters of Li4Ti5O12 submicrospheres with novel hierarchical microstructures are about 200–300 nm with the assembly of 20–30 nm nanoparticles. The electrochemical properties of Li4Ti5O12 submicrospheres are measured by galvanostatical discharge/charge test and cyclic voltammetry (CV). The as-prepared Li4Ti5O12 display excellent discharge/charge rate and cycling capability. A high discharge capacity of 174.3 mAh/g is obtained in the first discharge at 1 C rate. Meanwhile, there is only tiny capacity fading with nearly 100% columbic efficiency in the sequential 5–50 cycles. Moreover, lithium-ion diffusion coefficient in Li4Ti5O12 is calculated to be 1.03 × 10-7 cm2/s. The present results indicate that the as-prepared Li4Ti5O12 submicrospheres are promising anode candidates of rechargeable Li-ion batteries for high-power applications.We report on the preparation of spinel Li4Ti5O12 submicrospheres and their application as anode materials of rechargeable lithium-ion batteries. The spinel Li4Ti5O12 submicrospheres are synthesized with three steps of the hydrolysis of TiCl4 to form rutile TiO2, the hydrothermal treatment of rutile TiO2 with LiOH to prepare an intermediate phase of LiTi2O4+δ, and the calcinations of LiTi2O4+δ to obtain spinel Li4Ti5O12. The as-prepared products are investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The diameters of Li4Ti5O12 submicrospheres with novel hierarchical microstructures are about 200–300 nm with the assembly of 20–30 nm nanoparticles. The electrochemical properties of Li4Ti5O12 submicrospheres are measured by galvanostatical discharge/charge test and cyclic voltammetry (CV). The as-prepared Li4Ti5O12 display excellent discharge/charge rate and cycling capability. A high discharge capacity of 174.3 mAh/g is obtained in the first discharge at 1 C rate. Meanwhile, there is only tiny capacity fading with nearly 100% columbic efficiency in the sequential 5–50 cycles. Moreover, lithium-ion diffusion coefficient in Li4Ti5O12 is calculated to be 1.03 × 10-7 cm2/s. The present results indicate that the as-prepared Li4Ti5O12 submicrospheres are promising anode candidates of rechargeable Li-ion batteries for high-power applications.

关 键 词:LI4TI5O12 TiO2 TICL4 anode material lithium-ion battery 

分 类 号:TM912[电气工程—电力电子与电力传动] TM912.2

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象