机构地区:[1]Department of Geosciences,Zhejiang University
出 处:《Advances in Atmospheric Sciences》2011年第3期665-681,共17页大气科学进展(英文版)
基 金:sponsored by the National Program on Key Basic Research Project(973 Program) under Grant No.2009CB421500;the National Natural Science Foundation of China under Grant No.40675026.
摘 要:The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropical cyclone Bilis(2000) was selected as the case to study.The research data used are from the results of the non-hydrostatic mesoscale model(MM5),which has successfully simulated the transformation of a pre-existing weak large-scale tropical depression into a strong tropical storm.The scale separation technique is used to separate the synoptic-scale and sub-synoptic-scale fields from the model output fields. The scale-separated fields show that the pre-existing synoptic-scale tropical depression and the subsynoptic scale tropical cyclone formed later were different scale systems from beginning to end.It is also shown that the pre-existing synoptic-scale tropical depression did not contract to become the tropical cyclone. A series of weak,sub-synoptic-scale low and high pressure systems appeared and disappeared in the synopticscale depression,with one of the low systems near the center of the synoptic-scale depression having deepened to become the tropical cyclone. The roles of the synoptic-scale flow and the sub-synoptic scale disturbances in the formation of the tropical cyclone are investigated by diagnoses of the scale-separated vertical vorticity equation.The results show that the early development of the sub-synoptic scale vortex was fundamentally dependent on the strengthening synoptic-scale environmental depression.The depression was strengthened by cross-equatorial surges,which increased the convergence of the synoptic-scale depression at low levels and triggered the formation of the tropical cyclone.The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropical cyclone Bilis(2000) was selected as the case to study.The research data used are from the results of the non-hydrostatic mesoscale model(MM5),which has successfully simulated the transformation of a pre-existing weak large-scale tropical depression into a strong tropical storm.The scale separation technique is used to separate the synoptic-scale and sub-synoptic-scale fields from the model output fields. The scale-separated fields show that the pre-existing synoptic-scale tropical depression and the subsynoptic scale tropical cyclone formed later were different scale systems from beginning to end.It is also shown that the pre-existing synoptic-scale tropical depression did not contract to become the tropical cyclone. A series of weak,sub-synoptic-scale low and high pressure systems appeared and disappeared in the synopticscale depression,with one of the low systems near the center of the synoptic-scale depression having deepened to become the tropical cyclone. The roles of the synoptic-scale flow and the sub-synoptic scale disturbances in the formation of the tropical cyclone are investigated by diagnoses of the scale-separated vertical vorticity equation.The results show that the early development of the sub-synoptic scale vortex was fundamentally dependent on the strengthening synoptic-scale environmental depression.The depression was strengthened by cross-equatorial surges,which increased the convergence of the synoptic-scale depression at low levels and triggered the formation of the tropical cyclone.
关 键 词:tropical cyclone genesis cross-equatorial surges scale-separated vertical vorticity equation
分 类 号:P444[天文地球—大气科学及气象学] U675.1[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...