检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈明生[1] 梁光明[1] 孙即祥[1] 刘东华[1] 赵键[1]
机构地区:[1]国防科技大学电子科学与工程学院,长沙410073
出 处:《中国图象图形学报》2011年第6期1002-1007,共6页Journal of Image and Graphics
摘 要:为了弥补运动目标检测中传统混合高斯背景模型仅对单个像素建模、运算耗时的不足,通过提取背景时间统计特征和空间区域特征建立模型,针对模型中的高斯分量采用一种改进的分量个数自适应算法,并在此模型基础上,提出一种自适应迭代分块目标检测方法。通过包含区域信息的背景模型检测目标,减少在同一背景区域中目标的误判和漏判。将自适应迭代分块检测算法与背景的区域信息结合,可以在不降低检测精度的前提下大大提高算法执行速度。实验结果表明,相对于传统算法,本文检测法检测结果信噪比更高,目标更加完整,运行速度平均提高了22%。Moving objects extraction is a key part of video surveillance system. To improve the performance of moving objects detection method based on the Gaussian Mixture Model (GMM), an iterative detection algorithm with adaptive partitioning block of pixels is proposed. It is based on the temporal-spatial background that the number of components is improved adaptively and the feature of areas extracted spatially is combined. With the spatial areas information, the algorithm decreases the number of small fake objects and reduces the fragmentation of objects that caused by all kinds of noise. Comparing with detection method based on single pixel, the proposed method would not almost impact the detected results when it reduces the algorithm computation obviously. The results show that the objects extracted by the proposed method with higher SNR and the processing time decreases 22% contrasting to traditional algorithm.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222