机构地区:[1]College of Material Science and Chemical Engineering,Tianjin University of Science & Technology [2]Department of Chemistry and Chemical Engineering,Northeast Petroleum University
出 处:《Chinese Journal of Polymer Science》2011年第4期475-482,共8页高分子科学(英文版)
基 金:supported by the Program for New Century Excellent Talents in Universities(NCET-07-0142);the Program for New Century Excellent Talents in Heilongjiang Provincial Universities(NCET-06-010);the National Natural Science Foundation of China(No.20972025);the Science Foundation of Tianjin University of Science & Technology(No.20090420)
摘 要:Magnesium chloride supported vanadium/titanium bimetallic Ziegler-Natta catalysts with di-i-butyl phthalate as internal donor for copolymerization of ethylene and propylene were prepared. The effects of reaction temperature, ethylene/propylene molar ratio, aluminium/vanadium (Al/V) molar ratio and titanium/vanadium molar ratio on the catalytic activity were investigated. The molecular weight, molecular weight distribution, sequence composition and crystallinity of the products were measured by gel permeation chromatography, ^13C-NMR and differential scanning calorimetry analysis, respectively. In comparison to the vanadium and titanium catalysts, the bimetallic catalyst showed higher catalytic activity and better copolymerization performance. The obtained ethylene/propylene copolymers have high molecular weight (105), broad molecular weight distribution, high propylene content with random or short blocked sequence structures (rErp = 1.919), low melting temperatures and low crystallinities (Xc 〈 20%).Magnesium chloride supported vanadium/titanium bimetallic Ziegler-Natta catalysts with di-i-butyl phthalate as internal donor for copolymerization of ethylene and propylene were prepared. The effects of reaction temperature, ethylene/propylene molar ratio, aluminium/vanadium (Al/V) molar ratio and titanium/vanadium molar ratio on the catalytic activity were investigated. The molecular weight, molecular weight distribution, sequence composition and crystallinity of the products were measured by gel permeation chromatography, ^13C-NMR and differential scanning calorimetry analysis, respectively. In comparison to the vanadium and titanium catalysts, the bimetallic catalyst showed higher catalytic activity and better copolymerization performance. The obtained ethylene/propylene copolymers have high molecular weight (105), broad molecular weight distribution, high propylene content with random or short blocked sequence structures (rErp = 1.919), low melting temperatures and low crystallinities (Xc 〈 20%).
关 键 词:Ziegler-Natta polymerization Vanadium/titanium catalyst Ethylene-propylene copolymer.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...