机构地区:[1]Key Laboratory of Macromolecular Synthesis and Functionalization,Ministry of Education [2]Department of Polymer Science and Engineering,Zhejiang University
出 处:《Chinese Journal of Polymer Science》2011年第4期497-505,共9页高分子科学(英文版)
基 金:supported by the National Basic Research Program of China(No.2005CB623800);the National Natural Science Foundation of China(No.50603023);the Joint Research Fund for Overseas Chinese Young Scholars (No.50728302)
摘 要:The impact propylene copolymer (IPC) and isotactic polypropylene (iPP) were separately selected to prepare laminates with high density polyethylene (HDPE) by hot press. The peel forces of IPC/HDPE and iPP/HDPE laminates were examined, and it was found that the welded joint strength in IPC/HDPE laminate was dramatically higher than that of iPP/HDPE laminate. According to the special microstructure of IPC, the co-crystallization of the ethylene segments in ethylene-propylene block copolymer (EbP) component of IPC and the PE chain in HDPE was proposed to explain the high- strength welding. The DSC results indicated that there indeed existed some interaction between IPC and HDPE, and the crystallizable PE component in IPC could affect the crystallization of HDPE. The scanning electron microscope (SEM) observations of IPC/HDPE blends demonstrated that HDPE tended to stay with the PE-rich EbP chains to form the dispersed phase, indicating the good miscibility between HDPE and EbP components of IPC. According to the above results, the effect of co-crystallization of the PE components of the IPC and HDPE on the high weld strength of IPC/HDPE laminate was confirmed.The impact propylene copolymer (IPC) and isotactic polypropylene (iPP) were separately selected to prepare laminates with high density polyethylene (HDPE) by hot press. The peel forces of IPC/HDPE and iPP/HDPE laminates were examined, and it was found that the welded joint strength in IPC/HDPE laminate was dramatically higher than that of iPP/HDPE laminate. According to the special microstructure of IPC, the co-crystallization of the ethylene segments in ethylene-propylene block copolymer (EbP) component of IPC and the PE chain in HDPE was proposed to explain the high- strength welding. The DSC results indicated that there indeed existed some interaction between IPC and HDPE, and the crystallizable PE component in IPC could affect the crystallization of HDPE. The scanning electron microscope (SEM) observations of IPC/HDPE blends demonstrated that HDPE tended to stay with the PE-rich EbP chains to form the dispersed phase, indicating the good miscibility between HDPE and EbP components of IPC. According to the above results, the effect of co-crystallization of the PE components of the IPC and HDPE on the high weld strength of IPC/HDPE laminate was confirmed.
关 键 词:Impact propylene copolymer Polyethylene COCRYSTALLIZATION High weld strength.
分 类 号:TQ325.12[化学工程—合成树脂塑料工业] TQ320.721
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...