检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Chinese Journal of Electronics》2011年第2期268-272,共5页电子学报(英文版)
摘 要:This paper applies the sparse and redundant representation techniques to the problem of speech enhancement. More specifically, the K-SVD algorithm was used to train a data-driven overcomplete dictionary that describes the sparsity of speech. Orthogonal matching pursuit was employed to reconstruct the clean speech as a direct sparse decomposition technique over redundant dictionaries. Furthermore, the principle of iteration was introduced to the denoising process. When training was done on the noisy speech directly, the overall trainingreconstructing algorithm became fused into one iterative procedure. Simulation shows that our proposed approach outperforms the conventional methods in terms of spectrogram analysis, objective and subjective measures.
关 键 词:Speech enhancement SPARSITY Redun- dant representations K-singular value decomposition (K- SVD) Orthogonal matching pursuit.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] TN911.73[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28