检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南民族大学计算机科学与技术学院,四川成都610041
出 处:《计算机工程与科学》2011年第6期144-149,共6页Computer Engineering & Science
基 金:西南民族大学博士创新基金(09NBS003)
摘 要:针对传统模糊聚类分析法在信息系统的决策分析中无法有效解决各因素之间的相关性干扰,以及不同特征属性对聚类目标存在重要性差异等问题,本文提出一种融合层次分析法、Mahalanobis距离法及专家群决策法的改进模糊聚类分析法。在特征属性的重要性处理环节,层次分析法用于判断不同特征属性的相对重要性差异;引入Mahalanobis距离法进行相似矩阵的构建,能解决变量之间的相关性干扰问题;专家群决策法用于确定最佳阈值λ,能最大程度地降低主观因素对评价结论的不利影响。在SRM中的应用实验结果表明,改进的模糊聚类分析法在客观性和准确性上更能满足信息系统决策分析的需要。In the decision analysis of information systems,the traditional fuzzy clustering analysis has some shortcomings,which not only can not resolve the relevance interfering problem of the characteristic attributes,but also ignores the difference of importance dimensions among the different characteristic attributes.In order to overcome these defects,an improved algorithm is proposed based on the analytic hierarchy process,the Mahalanobis distance algorithm and the group decision method.In the link of importance treating,an analytic hierarchy process is used to estimate the importance dimensions of different characteristic attributes.The Mahalanobis distance algorithm is introduced to build the similarity matrix,and it can resolve the problem of relevance interference of the variables.The experts group decision method is also introduced to decide the best threshold λ,through this method,the adverse effects of the subjective factors to the conclusion of the analysis have been reduced greatly.The application in the supplier relationship management system shows that the improved fuzzy clustering analysis is greatly satisfied with the needs of the decision analysis in information systems.
关 键 词:模糊聚类分析 层次分析法 Mahalanobis距离法 群决策 供应商关系管理
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117