基于PSO和朴素贝叶斯的软件缺陷预测模型  被引量:6

Software Defect Prediction Model Based on Particle Swarm Optimization and Nave Bayes

在线阅读下载全文

作  者:葛贺贺[1] 金聪[1] 叶俊民[1] 

机构地区:[1]华中师范大学计算机科学系,武汉430079

出  处:《计算机工程》2011年第12期36-37,共2页Computer Engineering

基  金:湖北省自然科学基金资助项目(2010CDB04001)

摘  要:为了设计高效的软件缺陷预测模型,提出一种将粒子群优化算法与朴素贝叶斯(NB)相结合的方法。该方法对历史数据进行离散化后,以NB分类的错误率作为粒子适应值函数,构建软件缺陷预测模型。通过对美国国家航天局软件工程项目的JM1数据进行仿真实验,证明该模型在预测性能方面优于同类方法,预测效果良好。In order to design effective software defect prediction model, this paper proposes an approach combining Particle Swarm Optimization(PSO) algorithm and Naive Bayes(NB). After discretizing the original data, the error rate of NB is taken as fitness function of the particle, and a software defect prediction model is constructed. It applies one software project JM1 data of NASA to implement the simulation experiment. The results show that the approach proposed has lower error rate than other methods, and has good performance.

关 键 词:软件缺陷 预测模型 粒子群优化 朴素贝叶斯 数据离散化 

分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象