机构地区:[1]Beijing National Laboratory for Molecular Science CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China [2]College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
出 处:《Science China Chemistry》2011年第7期1051-1063,共13页中国科学(化学英文版)
基 金:supported by the National Natural Science Foundation of China (50673095 and 21021003);the Basic Research Development Program (2007CB808005 and 2009CB930802);the Fund of the Chinese Academy of Sciences
摘 要:Low-molecular-weight organogels(LMOG) have been attracting a surge interest in fabricating soft materials.Although the finding of the gelator molecules has been developed from serendipity to objective design,the achievement of the gelator molecules still needs good design and tedious organic synthesis.In this paper,we proposed a simple and general mixing approach to get the organogel for nearly all the organic compounds and even soluble nanoparticles without any modification.We have designed a universal gelator molecule,which forms organogels with more than 40 kinds of organic solvents from aploar to polar solvents.More interestingly,when other organic compounds or even nanomaterials,which are soluble in certain organic solvents,are mixed with this gelator molecule,they can form organogels no matter whether the individual compounds could form organogel or not.This method is applicable to nearly all kinds of soluble organic compounds and opens an efficient and universal way to fabricate gel materials.Low-molecular-weight organogels (LMOG) have been attracting a surge interest in fabricating soft materials. Although the finding of the gelator molecules has been developed from serendipity to objective design, the achievement of the gelator molecules still needs good design and tedious organic synthesis. In this paper, we proposed a simple and general mixing approach to get the organogel for nearly all the organic compounds and even soluble nanoparticles without any modification. We have designed a universal gelator molecule, which forms organogels with more than 40 kinds of organic solvents from aploar to polar solvents. More interestingly, when other organic compounds or even nanomaterials, which are soluble in certain organic solvents, are mixed with this gelator molecule, they can form organogels no matter whether the individual compounds could form organogel or not. This method is applicable to nearly all kinds of soluble organic compounds and opens an efficient and universal way to fabricate gel materials.
关 键 词:ORGANOGEL hybrid system supramolecular chemistry SELF-ASSEMBLY soft matter
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...