基于半监督增量聚类法的《神农本草经》365味中药分类研究  被引量:8

Classification of 365 Chinese medicines in Shennong's Materia Medica Classic based on a semi-supervised incremental clustering method

在线阅读下载全文

作  者:金锐[1] 张冰[1] 薛春苗[1] 刘森茂[2] 赵茜[1] 李康[2] 

机构地区:[1]北京中医药大学中药学院,北京100102 [2]北京大学数学科学学院,北京101871

出  处:《中西医结合学报》2011年第6期665-674,共10页Journal of Chinese Integrative Medicine

基  金:国家重点基础研究发展计划(973计划)资助项目(No.2007CB512605);北京市自然科学基金资助项目(No.7112075)

摘  要:中药的基本药效是临床处方用药的凭据,依据基本药效的药物分类研究对于把握药物作用倾向、发掘药效物质基础、探讨药性实质以及寻找药物替代品具有重要意义。本研究遵循中药临床应用特点,以经典中药学著作《神农本草经》为数据源,采用基于"微簇"概念的半监督增量聚类算法,进行中药分类研究及分类方法学研究。结果显示,《神农本草经》中365味中药共聚得126类,其中的253味中药归为14个药效类,包括补益类、清热类、利水类、除痹类、治疗妇科疾病类和治疗蛊毒鬼疰类等;112味中药单独成112类,与已知不同类别同时具有高相似度是产生大量独立类别的主要原因。本研究采用的半监督增量聚类法具有聚类质量好、可拓展性强等特点,适用于中药分类研究,并充分反映出中药多样性和复杂相似性,为依据药效的中药分类研究提供了新思考和方法学探讨。Evidence of the pharmacological activity of traditional Chinese medicine(TCM)provides the basis for clinical prescription.Study of the classification of Chinese medicines according to these activities is key to understanding the general active tendencies of medicinal prescriptions,exploring their material basis,investigating their properties and searching for their alternatives.Taking the herbal classic Shennong's Materia Medica Classic(Shennong Bencao Jing)for the data source,this paper studied the classification of Chinese medicines based on semi-supervised incremental clustering algorithm using "micro-cluster" concept in order to investigate the complex similarity among Chinese medicines.The results showed that 253 Chinese medicines were reasonably classified into 14 types,such as invigoration,clearing heat,diuresis,dredging blockages in the channels,treating gynecological conditions and treating strange diseases caused by ghosts.The results also showed that the other 112 Chinese medicines were classified into 112 individual types and the same high similarity to different known types was the main reason for this.The semi-supervised incremental clustering algorithm employed in the study had a high quality and a good development for clustering which is suitable for classification of Chinese medicines.This study illustrated the diversity of Chinese medicines and their complex similarities,thus aiming to provide innovative ideas and methods for related research.

关 键 词:中药 半监督增量聚类 分类法 聚类分析 本草经 数据挖掘 

分 类 号:R281.2[医药卫生—中药学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象