检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jun LI Hao SUN Jinshan WANG Zhenping FENG
机构地区:[1]Institute of Turbomachinery, Xi'an Jiaotong University, Xi'an 710049, CHINA
出 处:《Journal of Thermal Science》2011年第4期304-311,共8页热科学学报(英文版)
基 金:supported by China National Basic Research Program (973 Program),Project No.2007 CB 210107
摘 要:The steady and unsteady leakage flow and heat transfer characteristics of the rotor blade squealer tip were conducted by solving Reynolds-Averaged Navier-Stokes (RANS) equations with k-co turbulence model. The first stage of GE-E3 engine with squealer tip in the rotor was adopted to perform this work. The tip clearance was set to be 1% of the rotor blade height and the groove depth was specified as 2% of the span. The results showed that there were two vortexes in the tip gap which determined the local heat transfer characteristics. In the steady flow field, the high heat transfer coefficient existed at several positions. In the unsteady case, the flow field in the squealer tip was mainly influenced by the upstream wake and the interaction of the blades potential fields. These unsteady effects induced the periodic variation of the leakage flow and the vortexes, which resulted in the fluctuation of the heat transfer coefficient. The largest fluctuation of the heat transfer coefficient on the surface of the groove bottom exceeded 16% of the averaged value on the surface of the squealer tip.
关 键 词:Gas Turbine Blade Squealer Tip Leakage Flow Heat Transfer Numerical Simulation
分 类 号:TK124[动力工程及工程热物理—工程热物理] TH322[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15