检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨康[1] 李满春[1] 刘永学[1] 程亮[1] 江冲亚[1]
机构地区:[1]南京大学地理与海洋科学学院地理信息科学系,江苏南京210093
出 处:《遥感技术与应用》2011年第3期294-302,共9页Remote Sensing Technology and Application
基 金:国家自然科学基金项目(40701117;J0630535)
摘 要:研究提出了一种基于多点同时快速行进构建最短路径,提取遥感影像道路的方法。该方法依据道路灰度、梯度或边缘特征构建行进速度项,以多个道路特征点作为起始种子点,多点同时快速行进提取遥感影像最小能量图,并以起始种子点为中心点,按照最小能量值对图像区域进行划分,提取相邻区域对应起始点对行进过程中最先接触的鞍点,设定判定准则从鞍点中选取有效鞍点,剔除可能提取的错误捷径,从有效鞍点出发,沿最小能量值减小且梯度变化最快方向逆向搜索至对应起始点对提取最短路径,最终连接最短路径作为提取的道路。研究将该方法应用到ETM+、IKONOS、航空影像等遥感影像数据中,进行不同空间分辨率、不同大小、不同路网条件下道路提取的实验。结果表明该方法仅需少量的道路特征点作为先验知识,即可实现各类型道路信息的提取。提取的道路连续,无需细化、断线连接等后处理,能够实现多条道路的同时提取,具有较高的提取效率。This paper introduced fast marching and minimum path into road extraction from remotely sensed images and proposed a new road extraction method.The work builds on a novel variant of fast marching approach,named as multi-points fast marching.The underlying idea is to calculate minimum action map with multi-points propagating simultaneously.Efficacious saddle points are selected with judgment criterion to exclude potential erroneous shortcuts.The extraction roads are continuous line features between couples of starting points that dispense with thinning and broken lines connection.The programming implementation of the method is given and remote sensing imageries of ETM+,IKONOS and airborne images have been taken as case studies.The test images have different spatial resolution,size and road network conditions.The experiment shows that multi-points fast marching could extract roads from 161×163 ETM+ image in 0.10 s,1 653×1 630 IKONOS image in 21.20s,1 579×1 698 airborne image in 20.80 s.The results demonstrated that the proposed method can extract multiple roads with high efficiency and little post-processing.
关 键 词:遥感影像 道路提取 快速行进 最小能量图 最短路径
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222