检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京市水利科学研究所,北京100048 [2]黄河水文水资源科学研究所,河南郑州450004 [3]四川大学水电学院,四川成都610065
出 处:《人民黄河》2011年第6期1-2,23,共3页Yellow River
基 金:国家自然科学基金重点资助项目(50239050);国家自然科学基金资助项目(50249024;40271024)
摘 要:基于神经网络理论与传统分析方法,采用改进的BP网络算法,利用黄河陕县水文站531 a天然年径流时间序列,建立了黄河中下游年径流长期变化的BP网络预测模型,并以此模型对2001—2050年黄河中下游天然年径流变化趋势进行了预测分析,结果表明:①中下游天然年径流在未来50 a变化的大趋势是丰水时段比枯水时段略占优势,要经历2001—2020年相对丰水时段、2021—2026年相对枯水时段、2027—2037年相对丰水时段及2038—2050年相对枯水时段;②黄河中下游与上游的天然年径流变化的大趋势基本一致,但中下游出现连续枯水时段的时间较上游长。The paper builds BP network predictive model of long-term variation of annual runoff of the middle and lower Yellow River by using improved algorithm of BP network and the time series of natural annual runoff of Shaanxian Hydrometric Station on the Yellow River in 531 years based on neural network theory and traditional analysis.It conducts predictive analysis on the variation trend of natural annual runoff of the middle and lower Yellow River during the period of 2001-2050 by using the model.The outcomes show that a) the general variation trend of natural annual runoff of the middle and lower reaches in the next 50 years is that wet time interval modest gains than that of dry time interval,undergoing relative wet time interval of 2001-2020,relative dry time interval of 2021-2026,relative wet time interval of 2027-2037 and relative dry time interval of 2038-2050 and;b) the general trend of variation of natural annual runoff of the middle and lower reaches is basically the same as that of the upper stream,but the continuous dry time interval happened in the middle and lower reaches is longer than that of the upper stream.
分 类 号:P333[天文地球—水文科学] TV882.1[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222