基于代数网络和混沌参数的碰摩声发射源定位方法研究  被引量:6

Research on localization of acoustic emission source based on algebraic neural network and chaotic features

在线阅读下载全文

作  者:成新民[1] 胡峰[2] 邓艾东[2] 赵力[2] 

机构地区:[1]湖州师范学院信息与工程学院,浙江湖州313000 [2]东南大学火电机组振动国家工程研究中心,江苏南京210096

出  处:《振动工程学报》2011年第3期287-293,共7页Journal of Vibration Engineering

基  金:国家自然科学基金资助项目(60472058;60975017;60872057);江苏省自然科学基金资助项目(BK2008291);浙江省自然科学基金资助项目(R1090244;Y1101237)

摘  要:针对时差定位法受不同模式波速度差异及波形传播畸变等因素影响的问题,将神经网络技术应用到声发射源定位中。为了克服传统BP算法训练时间长和精度不够高的缺点,提出代数神经网络概念,在网络训练阶段引入代数算法,将复杂的非线性优化问题转化为简单的代数方程组求解问题,直接获得最优点,大大缩短了网络的学习时间。同时作为定位特征研究分析了转子碰摩声发射信号的非线性动力学特性,提出了关联维数、最大Lyapunov指数和K o lm ogorov熵等声发射源的非线性动力学新特征,并将其作为神经网络的输入定位特征。实验结果表明,利用这些声发射源的非线性动力学特征和神经网络结合能较好地解决了碰摩声发射源定位问题,为转子碰摩故障诊断提供依据,具有良好的应用前景和进一步研究的价值。Due to defects of time-difference of arrival localization which influenced by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique was introduced to calculate localization of the Acoustic Emission(AE) source.In order to overcome the shortcomings of the traditional BP algorithm such as long training time and low accuracy,we propose the concept of algebraic neural network and introduce the algebraic algorithm in the network training phase which transforms the complex nonlinear optimization problem to a set of simple algebraic equations and achieves the best result directly.Meanwhile the nonlinear dynamic features of the AE signals from rotor rub-impact are analyzed for AE source localization.New nonlinear dynamic features like correlation dimension,maximum Lyapunov exponent and Kolmogorov entropy are proposed to use as the localization features in the inputs of neural network.The experiment results show that rub-impact AE source localization problem is well solved by combining these nonlinear dynamic features and neural network,thus to provide an approach to rotor rub-impact fault diagnosis,the application prospects and further research.

关 键 词:声发射 定位 碰摩 混沌 代数神经网络 

分 类 号:TH165[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象