检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]信息工程大学国家数字交换系统工程技术研究中心,河南郑州450002 [2]河南省军区,河南郑州450003
出 处:《信息工程大学学报》2011年第3期363-368,共6页Journal of Information Engineering University
基 金:国家863计划资助项目(2009AA01A346)
摘 要:目前,成熟的商用入侵检测系统都是基于特征或者规则的精确匹配,如果攻击模式过于特殊或者攻击者采用一些躲避检测的手段,就容易产生误报或漏报,从而降低入侵检测系统的准确性。针对当前入侵检测系统存在的缺陷,提出了一种基于案例推理技术(Case-Based Reasoning,CBR)的入侵检测系统模型,并在该模型基础上提出了基于Snort的预处理模型以避免推理产生的系统资源过度消耗问题;提出了基于分层结构的案例库维护模型以解决案例质量问题和访问效率问题;设计了一种基于变权值的CBR引擎搜索匹配算法以提高搜索精度。仿真实验证明了上述系统可以有效地解决躲避攻击问题,其检测正确率较传统系统有所改善。At present, mature eommereial intrusion detection systems usually adopt precise matching based on features or rules. If an attack mode is too special or an attacker adopts some evading detection techniques, it will lead to high false positive or false negative, thereby reducing the accuracy of whole system. To solve those problems, this paper proposes an intrusion detection system model based on case-based reasoning, then puts forward the pretreatment model based on snort to avoid the problem of excessive consumption of system resources caused by reasoning, and uses layered struc- ture case base maintenance model to solve the problems of case quality and access speed, designs an improved matching algorithm based on variable weights for CBR engine to improve searching accuracy. Simulation results show that the above system can solve the problem of evading detection successfully and has been improved in detection rate compared with traditional systems.
关 键 词:入侵检测 基于案例的推理 SNORT 案例库构造 案例库维护 k-NN算法
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151