检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:向守兵[1,2] 苏光大[2] 陈健生[2] 刘京[2] 谭孝辉[1]
机构地区:[1]四川工程职业技术学院电气信息工程系,四川德阳618000 [2]清华大学电子工程系,北京100084
出 处:《光学学报》2011年第7期184-190,共7页Acta Optica Sinica
基 金:国家973计划(2007CB310600)资助课题
摘 要:针对砖瓦自动码坯中人工值守效率低、劳动强度大以及易漏检等问题,提出基于机器视觉的坯体异常自动检测与识别方法。分别采集分坯机和窖车上的坯体图像,采用改进的准十字中值滤波进行降噪处理;利用Canny算子提取坯体边缘;在分析坯体外形结构特点的基础上,采用极角约束的Hough变换对坯体纵向边缘直线段进行检测,提取每列坯体纵向完整度和横向宽度两个特征量对坯体进行异常识别。实验结果表明:在单层码坯和多层码坯方式下对掉坯、坯体错位和坯体倾斜的平均识别正确率为98.2%。能满足自动码坯系统中烧结普通砖坯体异常自动检测与识别的需求。Aiming at solving the problems such as low efficiency,high labor intensity and unsatisfying detection accuracy in traditional automatic brick stacking,a machine vision based automatic brick anomaly detection and recognition method is proposed.Brick images are captured from the brick delivering machine and the pit car are de-noised by applying an improved cross-like median filtering.Edges of bricks are extracted using the Canny edge detector.Vertical edges are detected by constraining polar angles in the Hough transform for analyzing the shape of the bricks.Anomaly detection is performed by measuring the length and width of the bricks in each column.Experimental results indicate that the average detection accuracy is 98.2% for brick-missing,brick-shifting and brick-tilting in one-scale brick stacks and multi-scale brick stacks.This meets the requirement of auto detection and recognition of brick anomaly in the automatic brick stack system of firing common bricks.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31