检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学输配电装备及系统安全与新技术国家重点实验室,重庆400030
出 处:《微电子学与计算机》2011年第7期57-60,共4页Microelectronics & Computer
摘 要:提出了基于K-Means算子的混合粒子群优化算法聚类,将K-Means算法的局部搜索能力与粒子群优化算法的全局寻优搜索能力相结合,根据群体适应度变化的情况自适应调整权重,并对种群中性能较差的粒子进行交叉选择,能充分挖掘群体本身信息,又能不断引入附加信息.数据集仿真实验表明,该算法有效的克服了传统粒子群优化算法过慢收敛和K-Means算法陷入局部收敛的问题,从而得到更好的聚类效果.This paper presents a hybrid PSO algorithm based on K-Means operator.It combines the locally searching capability of the K-Means algorithm with the global optimization capability of genetic algorithm,and introduces the K-Means operator into the PSO algorithm.It′s a hybrid algorithm using symbolic coding,adaptive mutation,and optimal individual retention policies.Simulation results show that the algorithm has effectively overcomes the slow convergence of PSO algorithm and the locality convergence of K-Means algorithm,in order to can get better clustering.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117