机构地区:[1]Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China) [2]Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)
出 处:《Pedosphere》2011年第4期539-548,共10页土壤圈(英文版)
基 金:Supported by the Chinese Academy of Sciences Action Plan for the Development of Western China (No. KZCX2-XB2-13);the Chinese Academy of Sciences Knowledge Innovation Program (No. KSCX2-YW-N-003);the 100 Talents Program of Chinese Academy of Sciences
摘 要:In order to utilize the wasted saline-sodic soils under shallow groundwater condition, a 3-year field study was carried in a field cropped with Lycium barbarum L. and irrigated by drip irrigation with saline groundwater under the water table depth of 30-40 cm in the northern Yinchuan Plain, China. Effects of cropping duration (one, two, and three years) on soil salinity, soil solution composition, and pH in three adjacent plots were investigated in 2008. Results showed that a high irrigation frequency maintained high soil water potential and subsequently facilitated infiltration and downward movement of water and salt in the crop root zone. Salt accumulated on the edges of the ridges, and soil saturated-paste electrical conductivity (ECe) was higher in the edge. Concentrations of Na^+, Ca^2+, Mg^2+, Cl^-, and SO24^- in the soil increased with the soil depth as did the ECe, while HCO3 and pH had a relative uniform distribution in soil profile. As planting year increased, the ECe and soil salts in the field had a decreasing tendency, while in the root zone they decreased immediately after irrigation and then remained relatively stable in the following growing seasons. HCO3 and pH had little change with the planting year. Results suggested that the application of drip irrigation with saline water could ameliorate saline-sodic soil and provide a relatively feasible soil environment for saline-sodic soils with shallow groundwater.In order to utilize the wasted saline-sodic soils under shallow groundwater condition,a 3-year field study was carried in a field cropped with Lycium barbarum L.and irrigated by drip irrigation with saline groundwater under the water table depth of 30-40 cm in the northern Yinchuan Plain,China.Effects of cropping duration (one,two,and three years) on soil salinity,soil solution composition,and pH in three adjacent plots were investigated in 2008.Results showed that a high irrigation frequency maintained high soil water potential and subsequently facilitated infiltration and downward movement of water and salt in the crop root zone.Salt accumulated on the edges of the ridges,and soil saturated-paste electrical conductivity (ECe) was higher in the edge.Concentrations of Na+,Ca2+,Mg2+,Cl-,and SO42- in the soil increased with the soil depth as did the ECe,while HCO3- and pH had a relative uniform distribution in soil profile.As planting year increased,the ECe and soil salts in the field had a decreasing tendency,while in the root zone they decreased immediately after irrigation and then remained relatively stable in the following growing seasons.HCO3- and pH had little change with the planting year.Results suggested that the application of drip irrigation with saline water could ameliorate saline-sodic soil and provide a relatively feasible soil environment for the growth of salt-tolerant plant Lycium barbarum L.under the saline-sodic soils with shallow groundwater.
关 键 词:water table the growth of salt-tolerant plant Lycium barbarum L. under the salt accumulation saturated-paste electrical conductivity (ECe) shallow groundwater soil water potential depth
分 类 号:S156.4[农业科学—土壤学] S273.4[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...