Gaussian mixture models for clustering and classifying traffic flow in real-time for traffic operation and management  被引量:1

用于交通运营管理的实时交通流状态分类高斯混合模型(英文)

在线阅读下载全文

作  者:孙璐[1,2] 张惠民 高荣 顾文钧[1] 徐冰[1] 陈鲤梁[1] 

机构地区:[1]东南大学交通学院 [2]Department of Civil Engineering,The Catholic University of America [3]山西省公路局晋中分局,晋中030600 [4]山西省公路局忻州分局,忻州034000

出  处:《Journal of Southeast University(English Edition)》2011年第2期174-179,共6页东南大学学报(英文版)

基  金:The US National Science Foundation (No. CMMI-0408390,CMMI-0644552);the American Chemical Society Petroleum Research Foundation (No.PRF-44468-G9);the Research Fellowship for International Young Scientists (No.51050110143);the Fok Ying-Tong Education Foundation (No.114024);the Natural Science Foundation of Jiangsu Province (No.BK2009015);the Postdoctoral Science Foundation of Jiangsu Province (No.0901005C)

摘  要:Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc.采用高斯混合模型GMM,同时以交通流量、平均速度和密度3种交通流宏观特征为指标,对交通流状态进行聚类和分类.和其他聚类分类方法比较,高斯混合模型是结构化的模型,适合于各种情形交通流参数.高斯混合模型中子类的个数通过Gap统计量结合交通流的领域知识加以确定,而模型的其他参数则由E-M算法进行估计.所建立的GMM模型可以作为实时交通流状态的分类器对新的观察值开展有效的分类识别和预报.同时,聚类分析和模式识别也可以用来对其他含有服务水平概念的设施进行聚类和分类分析,比如机场、停车场、交叉口等.

关 键 词:traffic flow patterns Gaussian mixture model level of service data mining cluster analysis CLASSIFIER 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象